
OpenSHMEM
Application Programming Interface

http://www.openshmem.org/

Version 1.3

19th February 2016

Developed by

• High Performance Computing Tools group at the University of Houston
http://www.cs.uh.edu/˜hpctools/

• Extreme Scale Systems Center, Oak Ridge National Laboratory
http://www.csm.ornl.gov/essc/

http://www.openshmem.org/
http://www.cs.uh.edu/~hpctools/
http://www.csm.ornl.gov/essc/

1.3

Sponsored by

• U.S. Department of Defense (DoD)
http://www.defense.gov/

• Oak Ridge National Laboratory (ORNL)
http://www.ornl.gov/

Authors and Collaborators

• Monika ten Bruggencate, Cray Inc.

• Matthew Baker, ORNL

• Barbara Chapman, University of Houston (UH)

• Tony Curtis, UH

• Eduardo D’Azevedo, ORNL

• James Dinan, Intel

• Karl Feind, SGI

• Manjunath Gorentla Venkata, ORNL

• Jeff Hammond, Intel

• Oscar Hernandez, ORNL

• David Knaak, Cray Inc.

• Gregory Koenig, ORNL

• Jeff Kuehn, Los Alamos National Laboratory (LANL)

• Graham Lopez, ORNL

• Jens Manser, DoD

• Tiffany M. Mintz, ORNL

• Nicholas Park, DoD

• Steve Poole, OSSS

• Wendy Poole, OSSS

• Swaroop Pophale, ORNL

• Michael Raymond, SGI

• Pavel Shamis, ORNL

• Sameer Shende, University of Oregon (UO)

• Lauren Smith, DoD

• Aaron Welch, ORNL

ii

http://www.defense.gov/
http://www.ornl.gov/

1.3

Acknowledgements

The OpenSHMEM specification belongs to Open Source Software Solutions, Inc. (OSSS), a non-profit organization,
under an agreement with SGI. The development work of the specification is supported by the Oak Ridge National
Laboratory Extreme Scale Systems Center and the Department of Defense.

We would also like to acknowledge the contribution of the members of the OpenSHMEM mailing list for their ideas,
discussions, suggestions, and constructive criticism which has helped us improve this document.

iii

Contents

1 The OpenSHMEM Effort . 1
2 Programming Model Overview . 1
3 Memory Model . 3
4 Execution Model . 4

4.1 Progress of OpenSHMEM Operations . 4
4.2 Atomicity Guarantees . 4

5 Language Bindings and Conformance . 5
6 Library Constants . 5
7 Environment Variables . 6
8 OpenSHMEM Library API . 7

8.1 Library Setup, Exit, and Query Routines . 7
8.1.1 SHMEM_INIT . 7
8.1.2 SHMEM_MY_PE . 8
8.1.3 SHMEM_N_PES . 9
8.1.4 SHMEM_FINALIZE . 10
8.1.5 SHMEM_GLOBAL_EXIT . 11
8.1.6 SHMEM_PE_ACCESSIBLE . 12
8.1.7 SHMEM_ADDR_ACCESSIBLE . 13
8.1.8 SHMEM_PTR . 14
8.1.9 SHMEM_INFO_GET_VERSION . 15
8.1.10 SHMEM_INFO_GET_NAME . 16
8.1.11 START_PES . 17

8.2 Memory Management Routines . 18
8.2.1 SHMEM_MALLOC, SHMEM_FREE, SHMEM_REALLOC, SHMEM_ALIGN 18
8.2.2 SHPALLOC . 19
8.2.3 SHPCLMOVE . 20
8.2.4 SHPDEALLOC . 21

8.3 Remote Memory Access Routines . 22
8.3.1 SHMEM_PUT . 22
8.3.2 SHMEM_P . 24
8.3.3 SHMEM_IPUT . 25
8.3.4 SHMEM_GET . 27
8.3.5 SHMEM_G . 29
8.3.6 SHMEM_IGET . 30

8.4 Non-blocking Remote Memory Access Routines . 32
8.4.1 SHMEM_PUT_NBI . 32
8.4.2 SHMEM_GET_NBI . 34

8.5 Atomic Memory Operations . 35
8.5.1 SHMEM_ADD . 36
8.5.2 SHMEM_CSWAP . 37
8.5.3 SHMEM_SWAP . 39
8.5.4 SHMEM_FINC . 40
8.5.5 SHMEM_INC . 42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

iv

1.3

8.5.6 SHMEM_FADD . 43
8.5.7 SHMEM_FETCH . 44
8.5.8 SHMEM_SET . 45

8.6 Collective Routines . 46
8.6.1 SHMEM_BARRIER_ALL . 47
8.6.2 SHMEM_BARRIER . 48
8.6.3 SHMEM_BROADCAST . 49
8.6.4 SHMEM_COLLECT, SHMEM_FCOLLECT 52
8.6.5 SHMEM_REDUCTIONS . 54
8.6.6 SHMEM_ALLTOALL . 62
8.6.7 SHMEM_ALLTOALLS . 65

8.7 Point-To-Point Synchronization Routines . 67
8.7.1 SHMEM_WAIT . 67

8.8 Memory Ordering Routines . 70
8.8.1 SHMEM_FENCE . 70
8.8.2 SHMEM_QUIET . 71
8.8.3 Synchronization and Communication Ordering in OpenSHMEM 72

8.9 Distributed Locking Routines . 76
8.9.1 SHMEM_LOCK . 76

8.10 Cache Management . 77
8.10.1 SHMEM_CACHE . 77

A Writing OpenSHMEM Programs 79

B Compiling and Running Programs 82
1 Compilation . 82
2 Running Programs . 82

C Undefined Behavior in OpenSHMEM 84

D Interoperability with other Programming Models 85
1 Message Passing Interface (MPI) Interoperability . 85

E History of OpenSHMEM 86

F OpenSHMEM Specification and Deprecated API 87

G Changes to this Document 88
1 Version 1.3 . 88
2 Version 1.2 . 89
3 Version 1.1 . 90

v

1.3

vi

1. THE OPENSHMEM EFFORT 1

1 The OpenSHMEM Effort

OpenSHMEM is a Partitioned Global Address Space (PGAS) library interface specification. OpenSHMEM aims to
provide a standard Application Programming Interface (API) for SHMEM libraries to aid portability and facilitate
uniform predictable results of OpenSHMEM programs by explicitly stating the behavior and semantics of the Open-
SHMEM library calls. Through the different versions, OpenSHMEM will continue to address the requirements of
the PGAS community. As of this specification, existing vendors are moving towards OpenSHMEM compliant imple-
mentations and new vendors are developing OpenSHMEM library implementations to help the users write portable
OpenSHMEM code. This ensures that programs can run on multiple platforms without having to deal with subtle
vendor-specific implementation differences. For more details on the history of OpenSHMEM please refer to the His-
tory of OpenSHMEM section.

The OpenSHMEM1 effort is driven by the Extreme Scale Systems Center (ESSC) at ORNL and the University of
Houston with significant input from the OpenSHMEM community. Besides the specification, the effort also includes
providing a reference OpenSHMEM implementation, validation and verification suites, tools, a mailing list and website
infrastructure to support specification activities. For more information please refer to: http://www.openshmem.
org/.

2 Programming Model Overview

OpenSHMEM implements PGAS by defining remotely accessible data objects as mechanisms to share information
among OpenSHMEM processes or Processing Elements (PEs) and private data objects that are accessible by the PE
itself. The API allows communication and synchronization operations on both private (local to the PE initiating the
operation) and remotely accessible data objects. The key feature of OpenSHMEM is that data transfer operations are
one-sided in nature. This means that a local PE executing a data transfer routine does not require the participation of
the remote PE to complete the routine. This allows for overlap between communication and computation to hide data
transfer latencies, which makes OpenSHMEM ideal for unstructured, small/medium size data communication patterns.
The OpenSHMEM library routines have the potential to provide a low-latency, high-bandwidth communication API
for use in highly parallelized scalable programs.

The OpenSHMEM interfaces can be used to implement Single Program Multiple Data (SPMD) style programs.
It provides interfaces to start the OpenSHMEM PEs in parallel, and communication and synchronization interfaces to
access remotely accessible data objects across PEs. These interfaces can be leveraged to divide a problem into multiple
sub-problems that can be solved independently or with coordination using the communication and synchronization
interfaces. The OpenSHMEM specification defines library calls, constants, variables, and language bindings for C
and Fortran. The C++ interface is currently the same as that for C. Unlike UPC, Fortran 2008, Titanium, X10 and
Chapel, which are all PGAS languages, OpenSHMEM relies on the user to use the library calls to implement the
correct semantics of its programming model.

An overview of the OpenSHMEM routines is described below:

1. Library Setup and Query

(a) Initialization: The OpenSHMEM library environment is initialized.

(b) Query: The local PE may get the number of PEs running the same program and its unique integer identifier.

(c) Accessibility: The local PE can find out if a remote PE is executing the same binary, or if a particular
symmetric data object can be accessed by a remote PE, or may obtain a pointer to a symmetric data object
on the specified remote PE on shared memory systems.

2. Symmetric Data Object Management

(a) Allocation: All executing PEs must participate in the allocation of a symmetric data object with identical
arguments.

1The OpenSHMEM specification is owned by Open Source Software Solutions Inc., a non-profit organization, under an agreement with SGI.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

http://www.openshmem.org/
http://www.openshmem.org/

2 3. MEMORY MODEL

(b) Deallocation: All executing PEs must participate in the deallocation of the same symmetric data object
with identical arguments.

(c) Reallocation: All executing PEs must participate in the reallocation of the same symmetric data object with
identical arguments.

3. Remote Memory Access

(a) Put: The local PE specifies the source data object (private or symmetric) that is copied to the symmetric
data object on the remote PE.

(b) Get: The local PE specifies the symmetric data object on the remote PE that is copied to a data object
(private or symmetric) on the local PE.

4. Atomics

(a) Swap: The PE initiating the swap gets the old value of a symmetric data object from a remote PE and
copies a new value to that symmetric data object on the remote PE.

(b) Increment: The PE initiating the increment adds 1 to the symmetric data object on the remote PE.

(c) Add: The PE initiating the add specifies the value to be added to the symmetric data object on the remote
PE.

(d) Compare and Swap: The PE initiating the swap gets the old value of the symmetric data object based on a
value to be compared and copies a new value to the symmetric data object on the remote PE.

(e) Fetch and Increment: The PE initiating the increment adds 1 to the symmetric data object on the remote
PE and returns with the old value.

(f) Fetch and Add: The PE initiating the add specifies the value to be added to the symmetric data object on
the remote PE and returns with the old value.

5. Synchronization and Ordering

(a) Fence: The PE calling fence ensures ordering of Put, AMO, and memory store operations to symmetric
data objects with respect to a specific destination PE.

(b) Quiet: The PE calling quiet ensures completion of remote access operations and stores to symmetric data
objects.

(c) Barrier: All or some PEs collectively synchronize and ensure completion of all remote and local updates
prior to any PE returning from the call.

6. Collective Communication

(a) Broadcast: The root PE specifies a symmetric data object to be copied to a symmetric data object on one
or more remote PEs (not including itself).

(b) Collection: All PEs participating in the routine get the result of concatenated symmetric objects contributed
by each of the PEs in another symmetric data object.

(c) Reduction: All PEs participating in the routine get the result of an associative binary routine over elements
of the specified symmetric data object on another symmetric data object.

7. Mutual Exclusion

(a) Set Lock: The PE acquires exclusive access to the region bounded by the symmetric lock variable.

(b) Test Lock: The PE tests the symmetric lock variable for availability.

(c) Clear Lock: The PE which has previously acquired the lock releases it.

8. Data Cache Control (deprecated)

(a) Implementation of mechanisms to exploit the capabilities of hardware cache if available.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3. MEMORY MODEL 3

PE N-1

Global and Static
Variables

Symmetric Heap

Local Variables

PE 0

Global and Static
Variables

Symmetric Heap

Local Variables

PE 1

Global and Static
Variables

Symmetric Heap

Local Variables

Re
m

ot
el

y A
cc

es
sib

le
 S

ym
m

et
ric

Da

ta
 O

bj
ec

ts

Variable: X Variable: X Variable: X
X = shmem_malloc(sizeof(long))

Pr
iva

te
 D

at
a

O
bj

ec
ts

Figure 1: OpenSHMEMMemory Model

3 Memory Model

An OpenSHMEM program consists of data objects that are private to each PE and data objects that are remotely
accessible by all PEs. Private data objects are stored in the local memory of each PE and can only be accessed by
the PE itself; these data objects cannot be accessed by other PEs via OpenSHMEM routines. Private data objects
follow the memory model of C or Fortran. Remotely accessible objects, however, can be accessed by remote PEs
using OpenSHMEM routines. Remotely accessible data objects are called Symmetric Data Objects. Each symmetric
data object has a corresponding object with the same name, type, and size on all PEs where that object is accessible
via the OpenSHMEM API2. (For the definition of what is accessible, see the descriptions for shmem_pe_accessible
and shmem_addr_accessible in sections 8.1.6 and 8.1.7.) Symmetric data objects accessed via typed OpenSHMEM
interfaces are required to be natural aligned based on their type requirements and underlying architecture. In Open-
SHMEM the following kinds of data objects are symmetric:

• Fortran data objects in common blocks or with the SAVE attribute. These data objects must not be defined in a
dynamic shared object (DSO).

• Global and static C and C++variables. These data objects must not be defined in a DSO.

• Fortran arrays allocated with shpalloc

• C and C++data allocated by shmem_malloc

OpenSHMEM dynamic memory allocation routines (shpalloc and shmem_malloc) allow collective allocation of
Symmetric Data Objects on a special memory region called the Symmetric Heap. The Symmetric Heap is created during
the execution of a program at a memory location determined by the implementation. The Symmetric Heap may reside
in different memory regions on different PEs. Figure 1 shows how OpenSHMEM implements a PGAS model using
remotely accessible symmetric objects and private data objects when executing an OpenSHMEM program. Symmetric
data objects are stored on the symmetric heap or in the global/static memory section of each PE.

2For efficiency reasons, the same offset (from an arbitrary memory address) for symmetric data objects might be used on all PEs. Further
discussion about symmetric heap layout and implementation efficiency can be found in section 8.2.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 4. EXECUTION MODEL

4 Execution Model

An OpenSHMEM program consists of a set of OpenSHMEM processes called PEs that execute in a SPMD-like model
where each PE can take a different execution path. For example, a PE can be implemented using an OS process.
The PEs progress asynchronously, and can communicate/synchronize via the OpenSHMEM interfaces. All PEs in an
OpenSHMEM program should start by calling the initialization routine shmem_init 3 before using any of the other
OpenSHMEM library routines. An OpenSHMEM program finishes execution by returning from the main routine
or when any PE calls shmem_global_exit. When returning from main, OpenSHMEM must complete all pending
communication and release all the resources associated to the library using an implicit collective synchronization
across PEs. The user has the option to call shmem_finalize (before returning from main) to complete all pending
communication and release all the OpenSHMEM library resources without terminating the program. Calling any
OpenSHMEM routine after shmem_finalize leads to undefined behavior.

The PEs of the OpenSHMEM program are identified by unique integers. The identifiers are integers assigned in
a monotonically increasing manner from zero to the total number of PEs minus 1. PE identifiers are used for Open-
SHMEM calls (e.g. to specify put or get routines on symmetric data objects, collective synchronization calls) or to
dictate a control flow for PEs using constructs of C or Fortran. The identifiers are fixed for the life of the OpenSHMEM
program.

4.1 Progress of OpenSHMEM Operations

The OpenSHMEM model assumes that computation and communication are naturally overlapped. OpenSHMEM
programs are expected to exhibit progression of communication both with and without OpenSHMEM calls. Consider
a PE that is engaged in a computation with no OpenSHMEM calls. Other PEs should be able to communicate (put,
get, collective, atomic, etc) and complete communication operations with that computationally-bound PE without that
PE issuing any explicit OpenSHMEM calls. OpenSHMEM communication calls involving that PE should progress
regardless of when that PE next engages in an OpenSHMEM call.

Note to implementors:

• An OpenSHMEM implementation for hardware that does not provide asynchronous communication capabilities
may require a software progress thread in order to process remotely-issued communication requests without
explicit program calls to the OpenSHMEM library.

• High performance implementations of OpenSHMEM are expected to leverage hardware offload capabilities and
provide asynchronous one-sided communication without software assistance.

• Implementations should avoid deferring the execution of one-sided operations until a synchronization point
where data is known to be available. High-quality implementations should attempt asynchronous delivery when-
ever possible, for performance reasons. Additionally, the OpenSHMEM community discourages releasing Open-
SHMEM implementations that do not provide asynchronous one-sided operations, as these have very limited
performance value for OpenSHMEM programs.

4.2 Atomicity Guarantees

OpenSHMEM contains a number of routines that operate on symmetric data atomically (Section 8.5). These routines
guarantee that accesses by OpenSHMEM’s atomic operations with the same datatype will be exclusive, but do not
guarantee exclusivity in combination with other routines, either inside OpenSHMEM or outside.

For example: during the execution of an atomic remote integer increment operation on a symmetric variable X,
no other OpenSHMEM atomic operation may access X. After the increment, X will have increased its value by 1 on
the destination PE, at which point other atomic operations may then modify that X. However, access to the symmetric
object X with non-atomic operations, such as one-sided put or get operations, will invalidate the atomicity guarantees.

3start_pes has been deprecated as of Specification 1.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5. LANGUAGE BINDINGS AND CONFORMANCE 5

5 Language Bindings and Conformance

OpenSHMEM provides ISO C and Fortran 90 language bindings. Any implementation that provides both C and
Fortran bindings can claim conformance to the specification. An implementation that provides e.g. only a C interface
may claim to conform to the OpenSHMEM specification with respect to the C language, but not to Fortran, and should
make this clear in its documentation. The OpenSHMEM header files for C and Fortran must contain only the interfaces
and constant names defined in this specification.

OpenSHMEM APIs can be implemented as either routines or macros. However, implementing the interfaces using
macros is strongly discouraged as this could severely limit the use of external profiling tools and high-level compiler
optimizations. An OpenSHMEM program should avoid defining routine names, variables, or identifiers with the prefix
SHMEM_(for C and Fortran), _SHMEM_(for C) or with OpenSHMEM API names.

All OpenSHMEM extension APIs that are not part of this specification must be defined in the shmemx.h include
file. These extensions shall use the shmemx_ prefix for all routine, variable, and constant names.

6 Library Constants

The constants that start with SHMEM_* are for both Fortran and C/C++, and they are compile-time constants. All
constants that start with _SHMEM_* are deprecated and provided for backwards compatibility.

Constant Description

C/C++/Fortran:
SHMEM_BCAST_SYNC_SIZE

Length of the pSync arrays needed for broadcast routines.
The value of this constant is implementation specific. Refer
to the Broadcast Routines section under Library Routines
for more information about the usage of this constant.

C/C++/Fortran:
SHMEM_SYNC_VALUE

The value used to initialize the elements of pSync arrays.
The value of this constant is implementation specific.

C/C++/Fortran:
SHMEM_REDUCE_SYNC_SIZE

Length of the work arrays needed for reduction routines.
The value of this constant is implementation specific. Refer
to the Reduction Routines section under Library Routines
for more information about the usage of this constant.

C/C++/Fortran:
SHMEM_BARRIER_SYNC_SIZE

Length of the work array needed for barrier routines. The
value of this constant is implementation specific. Refer to
the Barrier Synchronization Routines section under Library
Routines for more information about the usage of this con-
stant.

C/C++/Fortran:
SHMEM_COLLECT_SYNC_SIZE

Length of the work array needed for collect routines. The
value of this constant is implementation specific. Refer
to the Collect Routines section under Library Routines for
more information about the usage of this constant.

C/C++/Fortran:
SHMEM_ALLTOALL_SYNC_SIZE

Length of the work array needed for shmem_alltoall rou-
tines. The value of this constant is implementation specific.
Refer to the Alltoall routines sections under Library Rou-
tines for more information about the usage of this constant.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 7. ENVIRONMENT VARIABLES

C/C++/Fortran:
SHMEM_ALLTOALLS_SYNC_SIZE

Length of the work array needed for shmem_alltoalls rou-
tines. The value of this constant is implementation specific.
Refer to the Alltoalls routines sections under Library Rou-
tines for more information about the usage of this constant.

C/C++/Fortran:
SHMEM_REDUCE_MIN_WRKDATA_SIZE

Minimum length of work arrays used in various collective
routines.

C/C++/Fortran:
SHMEM_MAJOR_VERSION

Integer representing the major version of OpenSHMEM
standard in use.

C/C++/Fortran:
SHMEM_MINOR_VERSION

Integer representing the minor version of OpenSHMEM
standard in use.

C/C++/Fortran:
SHMEM_MAX_NAME_LEN

Integer representing the length of vendor string.

C/C++/Fortran:
SHMEM_VENDOR_STRING

String representing the vendor name of length less than
SHMEM_MAX_NAME_LEN. In Fortran the string must be
SHMEM_MAX_NAME_LEN and whitespace padded. It can
also be equal in length to SHMEM_MAX_NAME_LEN since
Fortran does not NULL terminate strings.

7 Environment Variables

The OpenSHMEM specification provides a set of environment variables that allows users to configure the Open-
SHMEM implementation, and receive information about the implementation. The implementations of the specification
are free to define additional variables. Currently, the specification defines four environment variables.

Variable Value Purpose
SMA_VERSION any print the library version at start-up
SMA_INFO any print helpful text about all these environment variables
SMA_SYMMETRIC_SIZE non-negative integer number of bytes to allocate for symmetric heap
SMA_DEBUG any enable debugging messages

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 7

8 OpenSHMEM Library API

8.1 Library Setup, Exit, and Query Routines

The library setup and query interfaces that initialize and monitor the parallel environment of the PEs.

8.1.1 SHMEM_INIT

A collective operation that allocates and initializes the resources used by the OpenSHMEM library.

SYNOPSIS

C/C++:
void shmem_init(void);

FORTRAN:
CALL SHMEM_INIT()

DESCRIPTION

Arguments
None.

API description
shmem_init allocates and initializes resources used by the OpenSHMEM library. It is a collective op-
eration that all PEs must call before any other OpenSHMEM routine may be called. At the end of
the OpenSHMEM program which it initialized, the call to shmem_init must be matched with a call to
shmem_finalize. After the first call to shmem_init, a subsequent call to shmem_init in the same program
results in undefined behavior.

Return Values
None.

Notes
As of OpenSHMEM Specification 1.2 the use of start_pes has been deprecated and is replaced with
shmem_init. While support for start_pes is still required in OpenSHMEM libraries, users are encour-
aged to use shmem_init. Replacing start_pes with shmem_init in OpenSHMEM programs with no further
changes is possible; there is an implicit shmem_finalize at the end of main. However, shmem_init differs
slightly from start_pes: multiple calls to shmem_init within a program results in undefined behavior, while
in the case of start_pes, any subsequent calls to start_pes after the first one resulted in a no-op.

EXAMPLES

This is a simple program that calls shmem_init:

PROGRAM PUT
INCLUDE "shmem.fh"

INTEGER TARG, SRC, RECEIVER, BAR
COMMON /T/ TARG
PARAMETER (RECEIVER=1)
CALL SHMEM_INIT()

IF (SHMEM_MY_PE() .EQ. 0) THEN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 8. OPENSHMEM LIBRARY API

SRC = 33
CALL SHMEM_INTEGER_PUT(TARG, SRC, 1, RECEIVER)

ENDIF

CALL SHMEM_BARRIER_ALL ! SYNCHRONIZES SENDER AND RECEIVER

IF (SHMEM_MY_PE() .EQ. RECEIVER) THEN
PRINT*,’PE ’, SHMEM_MY_PE(),’ TARG=’,TARG,’ (expect 33)’

ENDIF

CALL SHMEM_FINALIZE()

END

8.1.2 SHMEM_MY_PE

Returns the number of the calling PE.

SYNOPSIS

C/C++:
int shmem_my_pe(void);

FORTRAN:
INTEGER SHMEM_MY_PE, ME

ME = SHMEM_MY_PE()

DESCRIPTION

Arguments
None.

API description
This routine returns the PE number of the calling PE. It accepts no arguments. The result is an integer
between 0 and npes - 1, where npes is the total number of PEs executing the current program.

Return Values
Integer - Between 0 and npes - 1

Notes
Each PE has a unique number or identifier. As of OpenSHMEM Specification 1.2 the use of _my_pe has
been deprecated. Although OpenSHMEM libraries are required to support the call, users are encouraged to
use shmem_my_pe instead. The behavior and signature of the routine shmem_my_pe remains unchanged
from the deprecated _my_pe version.

EXAMPLES

The following shmem_my_pe example is for C/C++ programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

int me;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 9

shmem_init();
me = shmem_my_pe();
printf("My PE id is: %d\n", me);

return 0;
}

8.1.3 SHMEM_N_PES

Returns the number of PEs running in a program.

SYNOPSIS

C/C++:
int shmem_n_pes(void);

FORTRAN:
INTEGER SHMEM_N_PES, N_PES

N_PES = SHMEM_N_PES()

DESCRIPTION

Arguments
None.

API description
The routine returns the number of PEs running in the program.

Return Values
Integer - Number of PEs running in the OpenSHMEM program.

Notes
As of OpenSHMEM Specification 1.2 the use of _num_pes has been deprecated. Although OpenSHMEM
libraries are required to support the call, users are encouraged to use shmem_n_pes instead. The behav-
ior and signature of the routine shmem_n_pes remains unchanged from the deprecated _num_pes version.

EXAMPLES

The following shmem_n_pes example is for C/C++ programs:
#include <stdio.h>
#include <shmem.h>

int main(void)
{

int npes;

shmem_init();

npes = shmem_n_pes();

if (shmem_my_pe() == 0) {
printf("Number of PEs executing this program is: %d\n", npes);

}

return 0;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 8. OPENSHMEM LIBRARY API

8.1.4 SHMEM_FINALIZE

A collective operation that releases resources used by the OpenSHMEM library. This only terminates the Open-
SHMEM portion of a program, not the entire program.

SYNOPSIS

C/C++:
void shmem_finalize(void);

FORTRAN:
CALL SHMEM_FINALIZE()

DESCRIPTION

Arguments
None.

API description
shmem_finalize is a collective operation that ends the OpenSHMEM portion of a program previously initial-
ized by shmem_init and releases resources used by the OpenSHMEM library. This collective operation re-
quires all PEs to participate in the call. There is an implicit global barrier in shmem_finalize so that pending
communications are completed, and no resources can be released until all PEs have entered shmem_finalize.
shmem_finalize must be the last OpenSHMEM library call encountered in the OpenSHMEM portion of
a program. A call to shmem_finalize will release any resources initialized by a corresponding call to
shmem_init. All processes that represent the PEs will still exist after the call to shmem_finalize returns, but
they will no longer have access to any resources that have been released.

Return Values
None.

Notes
shmem_finalize releases all resources used by the OpenSHMEM library including the symmetric memory
heap and pointers initiated by shmem_ptr. This collective operation requires all PEs to participate in the
call, not just a subset of the PEs. The non-OpenSHMEM portion of a program may continue after a call
to shmem_finalize by all PEs. There is an implicit shmem_finalize at the end of main, so that having an
explicit call to shmem_finalize is optional. However, an explicit shmem_finalize may be required as an
entry point for wrappers used by profiling or other tools that need to perform their own finalization.

EXAMPLES

The following finalize example is for C/C++ programs:

#include <stdio.h>
#include <shmem.h>

long x = 10101;

int main(void) {
int me, npes;
long y = -1;

shmem_init();

me = shmem_my_pe();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 11

npes = shmem_n_pes();
if (me == 0)

y = shmem_long_g(&x, npes-1);

printf("%d: y = %ld\n", me, y);

shmem_finalize();
return 0;

}

8.1.5 SHMEM_GLOBAL_EXIT

A routine that allows any PE to force termination of an entire program.

SYNOPSIS

C/C++:
void shmem_global_exit(int status);

FORTRAN:
INTEGER STATUS

CALL SHMEM_GLOBAL_EXIT(status)

DESCRIPTION

Arguments
IN status The exit status from the main program.

API description
shmem_global_exit is a non-collective routine that allows any one PE to force termination of an Open-
SHMEM program for all PEs, passing an exit status to the execution environment. This routine terminates
the entire program, not just the OpenSHMEM portion. When any PE calls shmem_global_exit, it results in
the immediate notification to all PEs to terminate. shmem_global_exit flushes I/O and releases resources
in accordance with C/C++/Fortran language requirements for normal program termination. If more than
one PE calls shmem_global_exit, then the exit status returned to the environment shall be one of the values
passed to shmem_global_exit as the status argument. There is no return to the caller of shmem_global_exit;
control is returned from the OpenSHMEM program to the execution environment for all PEs.

Return Values
None.

Notes
shmem_global_exit may be used in situations where one or more PEs have determined that the program
has completed and/or should terminate early. Accordingly, the integer status argument can be used to
pass any information about the nature of the exit, e.g an encountered error or a found solution. Since
shmem_global_exit is a non-collective routine, there is no implied synchronization, and all PEs must ter-
minate regardless of their current execution state. While I/O must be flushed for standard language I/O calls
from C/C++/Fortran, it is implementation dependent as to how I/O done by other means (e.g. third party
I/O libraries) is handled. Similarly, resources are released according to C/C++/Fortran standard language
requirements, but this may not include all resources allocated for the OpenSHMEM program. However, a
quality implementation will make a best effort to flush all I/O and clean up all resources.

EXAMPLES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 8. OPENSHMEM LIBRARY API

#include <stdio.h>
#include <stdlib.h>
#include <shmem.h>

int
main(void)
{

int me, npes;

shmem_init();

me = shmem_my_pe();
npes = shmem_n_pes();

if (me == 0) {
FILE *fp = fopen("input.txt", "r");

if (fp == NULL) { /* Input file required by program is not available */
shmem_global_exit(EXIT_FAILURE);

}

/* do something with the file */

fclose(fp);
}

return 0;
}

8.1.6 SHMEM_PE_ACCESSIBLE

Determines whether a PE is accessible via OpenSHMEM’s data transfer routines.

SYNOPSIS

C/C++:
int shmem_pe_accessible(int pe);

FORTRAN:
LOGICAL LOG, SHMEM_PE_ACCESSIBLE

INTEGER pe

LOG = SHMEM_PE_ACCESSIBLE(pe)

DESCRIPTION

Arguments
IN pe Specific PE to be checked for accessibility from the local PE.

API description
shmem_pe_accessible is a query routine that indicates whether a specified PE is accessible via Open-
SHMEM from the local PE. The shmem_pe_accessible routine returns TRUE only if the remote PE is a
process running from the same executable file as the local PE, indicating that full OpenSHMEM support
for symmetric data objects (that reside in the static memory and symmetric heap) is available, otherwise it
returns FALSE. This routine may be particularly useful for hybrid programming with other communication
libraries (such as a MPI) or parallel languages. For example, on SGI Altix series systems, OpenSHMEM
is supported across multiple partitioned hosts and InfiniBand connected hosts. When running multiple
executable MPI programs using OpenSHMEM on an Altix, full OpenSHMEM support is available between
processes running from the same executable file. However, OpenSHMEM support between processes of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 13

different executable files is supported only for data objects on the symmetric heap, since static data objects
are not symmetric between different executable files.

Return Values
C/C++: The return value is 1 if the specified PE is a valid remote PE for OpenSHMEM routines; otherwise,
it is 0.

Fortran: The return value is .TRUE. if the specified PE is a valid remote PE for OpenSHMEM routines;
otherwise, it is .FALSE..

Notes
None.

8.1.7 SHMEM_ADDR_ACCESSIBLE

Determines whether an address is accessible via OpenSHMEM data transfer routines from the specified remote PE.

SYNOPSIS

C/C++:
int shmem_addr_accessible(const void *addr, int pe);

FORTRAN:
LOGICAL LOG, SHMEM_ADDR_ACCESSIBLE

INTEGER pe

LOG = SHMEM_ADDR_ACCESSIBLE(addr, pe)

DESCRIPTION

Arguments
IN addr Data object on the local PE.
IN pe Integer id of a remote PE.

API description
shmem_addr_accessible is a query routine that indicates whether a local address is accessible via Open-
SHMEM routines from the specified remote PE.
This routine verifies that the data object is symmetric and accessible with respect to a remote PE via Open-
SHMEM data transfer routines. The specified address addr is a data object on the local PE.
This routine may be particularly useful for hybrid programming with other communication libraries (such
as MPI) or parallel languages. For example, in SGI Altix series systems, for multiple executable MPI
programs that use OpenSHMEM routines, it is important to note that static memory, such as a Fortran
common block or C global variable, is symmetric between processes running from the same executable
file, but is not symmetric between processes running from different executable files. Data allocated from
the symmetric heap (shmem_malloc or shpalloc) is symmetric across the same or different executable
files.

Return Values
C/C++: The return value is 1 if addr is a symmetric data object and accessible via OpenSHMEM routines
from the specified remote PE; otherwise, it is 0.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 8. OPENSHMEM LIBRARY API

Fortran: The return value is .TRUE. if addr is a symmetric data object and accessible via OpenSHMEM
routines from the specified remote PE; otherwise, it is .FALSE..

Notes
None.

8.1.8 SHMEM_PTR

Returns a pointer to a data object on a specified PE.

SYNOPSIS

C/C++:
void *shmem_ptr(const void *dest, int pe);

FORTRAN:
POINTER (PTR, POINTEE)

INTEGER pe

PTR = SHMEM_PTR(dest, pe)

DESCRIPTION

Arguments
IN dest The symmetric data object to be referenced.
IN pe An integer that indicates the PE number on which dest is to be accessed.

If you are using Fortran, it must be a default integer value.

API description
shmem_ptr returns an address that may be used to directly reference dest on the specified PE. This address
can be assigned to a pointer. After that, ordinary loads and stores to this remote address may be performed.
When a sequence of loads (gets) and stores (puts) to a data object on a remote PE does not match the
access pattern provided in an OpenSHMEM data transfer routine like shmem_put32 or shmem_real_iget,
the shmem_ptr routine can provide an efficient means to accomplish the communication.

Return Values
The return value is a non-NULL address of the dest data object when it is accessible using memory loads
and stores in addition to OpenSHMEM operations. Otherwise, a NULL address is returned.

Notes
When calling shmem_ptr, dest is the address of the referenced symmetric data object on the calling PE.

EXAMPLES

This Fortran program calls shmem_ptr and then PE 0 writes to the BIGD array on PE 1:

PROGRAM REMOTEWRITE
INCLUDE "shmem.fh"

INTEGER BIGD(100)
SAVE BIGD

INTEGER POINTEE(*)
POINTER (PTR,POINTEE)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 15

CALL SHMEM_INIT()

IF (SHMEM_MY_PE() .EQ. 0) THEN
! initialize PE 1’s BIGD array
PTR = SHMEM_PTR(BIGD, 1) ! get address of PE 1’s BIGD

! array
DO I=1,100

POINTEE(I) = I
ENDDO

ENDIF

CALL SHMEM_BARRIER_ALL

IF (SHMEM_MY_PE() .EQ. 1) THEN
PRINT*,’BIGD on PE 1 is: ’
PRINT*,BIGD

ENDIF
END

This is the equivalent program written in C:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int bigd[100];
int *ptr;
int i;

shmem_init();

if (shmem_my_pe() == 0) {
/* initialize PE 1’s bigd array */
ptr = shmem_ptr(bigd, 1);
if (ptr == NULL)

printf("can’t use pointer to directly access PE 1’s array\n");
else

for (i=0; i<100; i++)

*ptr++ = i+1;
}

shmem_barrier_all();

if (shmem_my_pe() == 1) {
printf("bigd on PE 1 is:\n");
for (i=0; i<100; i++)

printf(" %d\n",bigd[i]);
printf("\n");

}
return 1;

}

8.1.9 SHMEM_INFO_GET_VERSION

Returns the major and minor version of the library implementation.

SYNOPSIS

C/C++:
void shmem_info_get_version(int *major, int *minor);

FORTRAN:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 8. OPENSHMEM LIBRARY API

INTEGER MAJOR, MINOR

SHMEM_INFO_GET_VERSION(MAJOR, MINOR)

DESCRIPTION

Arguments
OUT major The major version of the OpenSHMEM standard in use.
OUT minor The minor version of the OpenSHMEM standard in use.

API description
This routine returns the major and minor version of the OpenSHMEM standard in use. For a given library
implementation, the major and minor version returned by these calls is consistent with the compile-time
constants, SHMEM_MAJOR_VERSION and SHMEM_MINOR_VERSION, defined in its shmem.h.

Return Values
None.

Notes
None.

8.1.10 SHMEM_INFO_GET_NAME

This routine returns the vendor defined character string.

SYNOPSIS

C/C++:
void shmem_info_get_name(char *name);

FORTRAN:
CHARACTER *(*)NAME

SHMEM_INFO_GET_NAME(NAME)

DESCRIPTION

Arguments
OUT name The vendor defined string.

API description
This routine returns the vendor defined character string of size defined by the constant SHMEM_MAX_NAME_LEN.
The program calling this function prepares the memory of size SHMEM_MAX_NAME_LEN, and the im-
plementation copies the string of size at most SHMEM_MAX_NAME_LEN. In C, the string is terminated
by a null character. In Fortran, the string of size less than SHMEM_MAX_NAME_LEN is padded with
blank characters up to size SHMEM_MAX_NAME_LEN. The implementation copying a string of size
greater than SHMEM_MAX_NAME_LEN results in an undefined behavior. Multiple invocations of the
routine in an OpenSHMEM program always return the same string. For a given library implementation,
the major and minor version returned by these calls is consistent with the compile-time constants defined
in its shmem.h.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 17

Return Values
None.

Notes
None.

8.1.11 START_PES

Called at the beginning of an OpenSHMEM program to initialize the execution environment. This routine is deprecated
and is provided for backwards compatibility. Implementations must include it, and the routine should function properly
and may notify the user about deprecation of its use.

SYNOPSIS

C/C++:
void start_pes(int npes);

FORTRAN:
CALL START_PES(npes)

DESCRIPTION

Arguments
npes Unused Should be set to 0.

API description
The start_pes routine initializes the OpenSHMEM execution environment. An OpenSHMEM program
must call start_pes before calling any other OpenSHMEM routine.

Return Values
None.

Notes
If any other OpenSHMEM call occurs before start_pes, the behavior is undefined. Although it is recom-
mended to set npes to 0 for start_pes, this is not mandated. The value is ignored. Calling start_pes more
than once has no subsequent effect.
As of OpenSHMEM Specification 1.2 the use of start_pes has been deprecated. Although OpenSHMEM
libraries are required to support the call, program users are encouraged to use shmem_init instead.

EXAMPLES

This is a simple program that calls start_pes:

PROGRAM PUT
INCLUDE "shmem.fh"

INTEGER TARG, SRC, RECEIVER, BAR
COMMON /T/ TARG
PARAMETER (RECEIVER=1)
CALL START_PES(0)

IF (SHMEM_MY_PE() .EQ. 0) THEN
SRC = 33

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 8. OPENSHMEM LIBRARY API

CALL SHMEM_INTEGER_PUT(TARG, SRC, 1, RECEIVER)
ENDIF

CALL SHMEM_BARRIER_ALL ! SYNCHRONIZES SENDER AND RECEIVER

IF (SHMEM_MY_PE() .EQ. RECEIVER) THEN
PRINT*,’PE ’, SHMEM_MY_PE(),’ TARG=’,TARG,’ (expect 33)’

ENDIF
END

8.2 Memory Management Routines

OpenSHMEM provides a set of APIs for managing the symmetric heap. The APIs allow one to dynamically allocate,
deallocate, reallocate and align symmetric data objects in the symmetric heap, in C and Fortran.

8.2.1 SHMEM_MALLOC, SHMEM_FREE, SHMEM_REALLOC, SHMEM_ALIGN

Symmetric heap memory management routines.

SYNOPSIS

C/C++:
void *shmem_malloc(size_t size);

void shmem_free(void *ptr);

void *shmem_realloc(void *ptr, size_t size);

void *shmem_align(size_t alignment, size_t size);

DESCRIPTION

Arguments
IN size The size, in bytes, of a block to be allocated from the symmetric heap.

This argument is of type size_t
IN ptr Points to a block within the symmetric heap.
IN alignment Byte alignment of the block allocated from the symmetric heap.

API description
The shmem_malloc routine returns a pointer to a block of at least size bytes suitably aligned for any use.
This space is allocated from the symmetric heap (in contrast to malloc, which allocates from the private
heap).
The shmem_align routine allocates a block in the symmetric heap that has a byte alignment specified by
the alignment argument.
The shmem_free routine causes the block to which ptr points to be deallocated, that is, made available for
further allocation. If ptr is a null pointer, no action occurs.
The shmem_realloc routine changes the size of the block to which ptr points to the size (in bytes) specified
by size. The contents of the block are unchanged up to the lesser of the new and old sizes. If the new size is
larger, the newly allocated portion of the block is uninitialized. If ptr is a NULL pointer, the shmem_realloc
routine behaves like the shmem_malloc routine for the specified size. If size is 0 and ptr is not a NULL
pointer, the block to which it points is freed. If the space cannot be allocated, the block to which ptr points
is unchanged.
The shmem_malloc, shmem_free, and shmem_realloc routines are provided so that multiple PEs in a pro-
gram can allocate symmetric, remotely accessible memory blocks. These memory blocks can then be used
with OpenSHMEM communication routines. Each of these routines call the shmem_barrier_all routine
before returning; this ensures that all PEs participate in the memory allocation, and that the memory on

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 19

other PEs can be used as soon as the local PE returns. The user is responsible for calling these routines
with identical argument(s) on all PEs; if differing size arguments are used, the behavior of the call and any
subsequent OpenSHMEM calls becomes undefined.

Return Values
The shmem_malloc routine returns a pointer to the allocated space; otherwise, it returns a NULL pointer.
The shmem_free routine returns no value.
The shmem_realloc routine returns a pointer to the allocated space (which may have moved); otherwise, it
returns a null pointer.
The shmem_align routine returns an aligned pointer to the allocated space; otherwise, it returns a NULL
pointer.

Notes
As of Specification 1.2 the use of shmalloc, shmemalign, shfree, and shrealloc has been deprecated. Al-
though OpenSHMEM libraries are required to support the calls, program users are encouraged to use
shmem_malloc, shmem_align, shmem_free, and shmem_realloc instead. The behavior and signature of
the routines remains unchanged from the deprecated versions.
The total size of the symmetric heap is determined at job startup. One can adjust the size of the heap using
the SMA_SYMMETRIC_SIZE environment variable (where available).
The shmem_malloc, shmem_free, and shmem_realloc routines differ from the private heap allocation rou-
tines in that all PEs in a program must call them (a barrier is used to ensure this).

Note to implementors
The symmetric heap allocation routines always return a pointer to corresponding symmetric objects across
all PEs. The OpenSHMEM specification does not require that the virtual addresses are equal across all PEs.
Nevertheless, the implementation must avoid costly address translation operations in the communication
path, including order N (where N is the number of PEs) memory translation tables. In order to avoid ad-
dress translations, the implementation may re-map the allocated block of memory based on agreed virtual
address. Additionally, some operating systems provide an option to disable virtual address randomization,
which enables predictable allocation of virtual memory addresses.

8.2.2 SHPALLOC

Allocates a block of memory from the symmetric heap.

SYNOPSIS

FORTRAN:
POINTER (addr, A(1))

INTEGER length, errcode, abort

CALL SHPALLOC(addr, length, errcode, abort)

DESCRIPTION

Arguments
OUT addr First word address of the allocated block.
IN length Number of words of memory requested. One word is 32 bits.
OUT errcode Error code is 0 if no error was detected; otherwise, it is a negative inte-

ger code for the type of error.
IN abort Abort code; nonzero requests abort on error; 0 requests an error code.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 8. OPENSHMEM LIBRARY API

API description
SHPALLOC allocates a block of memory from the program’s symmetric heap that is greater than or equal
to the size requested. To maintain symmetric heap consistency, all PEs in an program must call SHPALLOC
with the same value of length; if any PEs are missing, the program will hang.
By using the Fortran POINTER mechanism in the following manner, you can use array A to refer to the
block allocated by SHPALLOC: POINTER (addr, A())

Return Values

Error Code Condition
-1 Length is not an integer greater than 0
-2 No more memory is available from the system (checked if the

request cannot be satisfied from the available blocks on the sym-
metric heap).

Notes
The total size of the symmetric heap is determined at job startup. One may adjust the size of the heap using
the SMA_SYMMETRIC_SIZE environment variable (if available).

Note to implementors
The symmetric heap allocation routines always return a pointer to corresponding symmetric objects across
all PEs. The OpenSHMEM specification does not require that the virtual addresses are equal across all PEs.
Nevertheless, the implementation must avoid costly address translation operations in the communication
path, including order N (where N is the number of PEs) memory translation tables. In order to avoid ad-
dress translations, the implementation may re-map the allocated block of memory based on agreed virtual
address. Additionally, some operating systems provide an option to disable virtual address randomization,
which enables predictable allocation of virtual memory addresses.

8.2.3 SHPCLMOVE

Extends a symmetric heap block or copies the contents of the block into a larger block.

SYNOPSIS

FORTRAN:
POINTER (addr, A(1))

INTEGER length, status, abort

CALL SHPCLMOVE (addr, length, status, abort)

DESCRIPTION

Arguments
INOUT addr On entry, first word address of the block to change; on exit, the new

address of the block if it was moved.
IN length Requested new total length in words. One word is 32 bits.
OUT status Status is 0 if the block was extended in place, 1 if it was moved, and a

negative integer for the type of error detected.
IN abort Abort code. Nonzero requests abort on error; 0 requests an error code.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 21

API description
The SHPCLMOVE routine either extends a symmetric heap block if the block is followed by a large enough
free block or copies the contents of the existing block to a larger block and returns a status code indicating
that the block was moved. This routine also can reduce the size of a block if the new length is less than
the old length. All PEs in a program must call SHPCLMOVE with the same value of addr to maintain
symmetric heap consistency; if any PEs are missing, the program hangs.

Return Values

Error Code Condition
-1 Length is not an integer greater than 0
-2 No more memory is available from the system (checked if the

request cannot be satisfied from the available blocks on the sym-
metric heap).

-3 Address is outside the bounds of the symmetric heap.
-4 Block is already free.
-5 Address is not at the beginning of a block.

Notes
None.

8.2.4 SHPDEALLOC

Returns a memory block to the symmetric heap.

SYNOPSIS

FORTRAN:
POINTER (addr, A(1))

INTEGER errcode, abort

CALL SHPDEALLC(addr, errcode, abort)

DESCRIPTION

Arguments
IN addr First word address of the block to deallocate.
OUT errcode Error code is 0 if no error was detected; otherwise, it is a negative inte-

ger code for the type of error.
IN abort Abort code. Nonzero requests abort on error; 0 requests an error code.

API description
SHPDEALLC returns a block of memory (allocated using SHPALLOC) to the list of available space in the
symmetric heap. To maintain symmetric heap consistency, all PEs in a program must call SHPDEALLC
with the same value of addr; if any PEs are missing, the program hangs.

Return Values

Error Code Condition
-1 Length is not an integer greater than 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 8. OPENSHMEM LIBRARY API

-2 No more memory is available from the system (checked if the
request cannot be satisfied from the available blocks on the sym-
metric heap).

-3 Address is outside the bounds of the symmetric heap.
-4 Block is already free.
-5 Address is not at the beginning of a block.

Notes
None.

8.3 Remote Memory Access Routines

The Remote Memory Access (RMA) routines described in this section are one-sided communication mechanisms of the
OpenSHMEM API. While using these mechanisms, the user is required to provide parameters only on the calling side.
A characteristic of one-sided communication is that it decouples communication from the synchronization. One-sided
communication mechanisms transfer the data but do not synchronize the sender of the data with the receiver of the
data.

OpenSHMEM RMA routines are all performed on the symmetric objects. The initiator PE of the call is designated
as source, and the PE in which memory is accessed is designated as dest. In the case of the remote update routine, Put,
the origin is the source PE and the destination PE is the dest PE. In the case of the remote read routine, Get, the origin
is the dest PE and the destination is the source PE.

Where appropriate compiler support is available, OpenSHMEM provides type-generic one-sided communication
interfaces via C11 generic selection (C11 §6.5.1.14) for block, scalar, and block-strided put and get communication.
Such type-generic routines are supported for the “standard RMA types” identified in Table 1.

TYPE TYPENAME
float float
double double
long double longdouble
char char
short short
int int
long long
long long longlong

Table 1: Standard RMA Types and Names

8.3.1 SHMEM_PUT

The put routines provide a method for copying data from a contiguous local data object to a data object on a specified
PE.

SYNOPSIS

C11:
void shmem_put(TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 1.

C/C++:
4Formally, the C11 specification is ISO/IEC 9899:2011(E).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 23

void shmem_<TYPENAME>_put(TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 1.
void shmem_put<SIZE>(void *dest, const void *source, size_t nelems, int pe);

where SIZE is one of 8, 16, 32, 64, 128.
void shmem_putmem(void *dest, const void *source, size_t nelems, int pe);

FORTRAN:
CALL SHMEM_CHARACTER_PUT(dest, source, nelems, pe)

CALL SHMEM_COMPLEX_PUT(dest, source, nelems, pe)

CALL SHMEM_DOUBLE_PUT(dest, source, nelems, pe)

CALL SHMEM_INTEGER_PUT(dest, source, nelems, pe)

CALL SHMEM_LOGICAL_PUT(dest, source, nelems, pe)

CALL SHMEM_PUT4(dest, source, nelems, pe)

CALL SHMEM_PUT8(dest, source, nelems, pe)

CALL SHMEM_PUT32(dest, source, nelems, pe)

CALL SHMEM_PUT64(dest, source, nelems, pe)

CALL SHMEM_PUT128(dest, source, nelems, pe)

CALL SHMEM_PUTMEM(dest, source, nelems, pe)

CALL SHMEM_REAL_PUT(dest, source, nelems, pe)

DESCRIPTION

Arguments
IN dest Data object to be updated on the remote PE. This data object must be

remotely accessible.
OUT source Data object containing the data to be copied.
IN nelems Number of elements in the dest and source arrays. nelems must be

of type size_t for C. If you are using Fortran, it must be a constant,
variable, or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. If you are
using Fortran, it must be a constant, variable, or array element of default
integer type.

API description
The routines return after the data has been copied out of the source array on the local PE. The delivery of
data words into the data object on the destination PE may occur in any order. Furthermore, two successive
put routines may deliver data out of order unless a call to shmem_fence is introduced between the two
calls.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

shmem_putmem Fortran: Any noncharacter type. C: Any data type. nelems is
scaled in bytes.

shmem_put4, shmem_put32 Any noncharacter type that has a storage size equal to 32 bits.
shmem_put8 C: Any noncharacter type that has a storage size equal to 8 bits.

Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_put64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_put128 Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_CHARACTER_PUT Elements of type character. nelems is the number of characters

to transfer. The actual character lengths of the source and dest
variables are ignored.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24 8. OPENSHMEM LIBRARY API

SHMEM_COMPLEX_PUT Elements of type complex of default size.
SHMEM_DOUBLE_PUT Elements of type double precision.
SHMEM_INTEGER_PUT Elements of type integer.
SHMEM_LOGICAL_PUT Elements of type logical.
SHMEM_REAL_PUT Elements of type real.

Return Values
None.

Notes
If you are using Fortran, data types must be of default size. For example, a real variable must be declared
as REAL, REAL*4, or REAL(KIND=KIND(1.0)). The Fortran API routine SHMEM_PUT has been depre-
cated, and either SHMEM_PUT8 or SHMEM_PUT64 should be used in its place.

EXAMPLES

The following shmem_put example is for C/C++ programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

long source[10] = { 1, 2, 3, 4, 5,
6, 7, 8, 9, 10 };

static long dest[10];
shmem_init();
if (shmem_my_pe() == 0) {

/* put 10 words into dest on PE 1 */
shmem_put(dest, source, 10, 1);

}
shmem_barrier_all(); /* sync sender and receiver */
printf("dest[0] on PE %d is %ld\n", shmem_my_pe(), dest[0]);
return 0;

}

8.3.2 SHMEM_P

Copies one data item to a remote PE.

SYNOPSIS

C11:
void shmem_p(TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard RMA types specified by Table 1.

C/C++:
void shmem_<TYPENAME>_p(TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 1.

DESCRIPTION

Arguments
IN addr The remotely accessible array element or scalar data object which will

receive the data on the remote PE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 25

IN value The value to be transferred to addr on the remote PE.
IN pe The number of the remote PE.

API description
These routines provide a very low latency put capability for single elements of most basic types.
As with shmem_put, these routines start the remote transfer and may return before the data is delivered to
the remote PE. Use shmem_quiet to force completion of all remote Put transfers.

Return Values
None.

Notes
None.

EXAMPLES

The following example uses shmem_p in a C program.

#include <stdio.h>
#include <math.h>
#include <shmem.h>
static const double e = 2.71828182;
static const double epsilon = 0.00000001;

int main(void)
{

double *f;
int me;

shmem_init();
me = shmem_my_pe();
f = (double *) shmem_malloc(sizeof (*f));

*f = 3.1415927;
shmem_barrier_all();

if (me == 0)
shmem_p(f, e, 1);

shmem_barrier_all();
if (me == 1)

printf("%s\n", (fabs (*f - e) < epsilon) ? "OK" : "FAIL");

return 0;
}

8.3.3 SHMEM_IPUT

Copies strided data to a specified PE.

SYNOPSIS

C11:
void shmem_iput(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst, size_t nelems,

int pe);

where TYPE is one of the standard RMA types specified by Table 1.

C/C++:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

26 8. OPENSHMEM LIBRARY API

void shmem_<TYPENAME>_iput(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst,

size_t nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 1.
void shmem_iput<SIZE>(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t

nelems, int pe);

where SIZE is one of 8, 16, 32, 64, 128.

FORTRAN:
INTEGER dst, sst, nelems, pe

CALL SHMEM_COMPLEX_IPUT(dest, source, dst, sst, nelems, pe)

CALL SHMEM_DOUBLE_IPUT(dest, source, dst, sst, nelems, pe)

CALL SHMEM_INTEGER_IPUT(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT4(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT8(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT32(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT64(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IPUT128(dest, source, dst, sst, nelems, pe)

CALL SHMEM_LOGICAL_IPUT(dest, source, dst, sst, nelems, pe)

CALL SHMEM_REAL_IPUT(dest, source, dst, sst, nelems, pe)

DESCRIPTION

Arguments
OUT dest Array to be updated on the remote PE. This data object must be re-

motely accessible.
IN source Array containing the data to be copied.
IN dst The stride between consecutive elements of the dest array. The stride

is scaled by the element size of the dest array. A value of 1 indicates
contiguous data. dst must be of type ptrdiff_t. If you are using Fortran,
it must be a default integer value.

IN sst The stride between consecutive elements of the source array. The stride
is scaled by the element size of the source array. A value of 1 indicates
contiguous data. sst must be of type ptrdiff_t. If you are using Fortran,
it must be a default integer value.

IN nelems Number of elements in the dest and source arrays. nelems must be
of type size_t for C. If you are using Fortran, it must be a constant,
variable, or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. If you are
using Fortran, it must be a constant, variable, or array element of default
integer type.

API description
The iput routines provide a method for copying strided data elements (specified by sst) of an array from
a source array on the local PE to locations specified by stride dst on a dest array on specified remote PE.
Both strides, dst and sst, must be greater than or equal to 1. The routines return when the data has been
copied out of the source array on the local PE but not necessarily before the data has been delivered to the
remote data object.

The dest and source data objects must conform to typing constraints, which are as follows:

Routine Data type of dest and source

shmem_iput4, shmem_iput32 Any noncharacter type that has a storage size equal to 32 bits.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 27

shmem_iput8 C: Any noncharacter type that has a storage size equal to 8 bits.
Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_iput64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_iput128 Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_COMPLEX_IPUT Elements of type complex of default size.
SHMEM_DOUBLE_IPUT Elements of type double precision.
SHMEM_INTEGER_IPUT Elements of type integer.
SHMEM_LOGICAL_IPUT Elements of type logical.
SHMEM_REAL_IPUT Elements of type real.

Return Values
None.

Notes
If you are using Fortran, data types must be of default size. For example, a real variable must be declared
as REAL, REAL*4 or REAL(KIND=KIND(1.0)). See Section 3 for a definition of the term remotely acces-
sible.

EXAMPLES

Consider the following shmem_iput example for C/C++ programs.
#include <stdio.h>
#include <shmem.h>

int main(void)
{

short source[10] = { 1, 2, 3, 4, 5,
6, 7, 8, 9, 10 };

static short dest[10];
shmem_init();
if (shmem_my_pe() == 0) {

/* put 5 words into dest on PE 1 */
shmem_iput(dest, source, 1, 2, 5, 1);

}
shmem_barrier_all(); /* sync sender and receiver */
if (shmem_my_pe() == 1) {

printf("dest on PE %d is %d %d %d %d %d\n", shmem_my_pe(),
(int)dest[0], (int)dest[1], (int)dest[2],
(int)dest[3], (int)dest[4]);

}
shmem_barrier_all(); /* sync before exiting */
return 0;

}

8.3.4 SHMEM_GET

Copies data from a specified PE.

SYNOPSIS

C11:
void shmem_get(TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 1.

C/C++:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

28 8. OPENSHMEM LIBRARY API

void shmem_<TYPENAME>_get(TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 1.
void shmem_get<SIZE>(void *dest, const void *source, size_t nelems, int pe);

where SIZE is one of 8, 16, 32, 64, 128.
void shmem_getmem(void *dest, const void *source, size_t nelems, int pe);

FORTRAN:
INTEGER nelems, pe

CALL SHMEM_CHARACTER_GET(dest, source, nelems, pe)

CALL SHMEM_COMPLEX_GET(dest, source, nelems, pe)

CALL SHMEM_DOUBLE_GET(dest, source, nelems, pe)

CALL SHMEM_GET4(dest, source, nelems, pe)

CALL SHMEM_GET8(dest, source, nelems, pe)

CALL SHMEM_GET32(dest, source, nelems, pe)

CALL SHMEM_GET128(dest, source, nelems, pe)

CALL SHMEM_GETMEM(dest, source, nelems, pe)

CALL SHMEM_INTEGER_GET(dest, source, nelems, pe)

CALL SHMEM_LOGICAL_GET(dest, source, nelems, pe)

CALL SHMEM_REAL_GET(dest, source, nelems, pe)

DESCRIPTION

Arguments
OUT dest Local data object to be updated.
IN source Data object on the PE identified by pe that contains the data to be

copied. This data object must be remotely accessible.
IN nelems Number of elements in the dest and source arrays. nelems must be

of type size_t for C. If you are using Fortran, it must be a constant,
variable, or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. If you are
using Fortran, it must be a constant, variable, or array element of default
integer type.

API description
The get routines provide a method for copying a contiguous symmetric data object from a different PE to
a contiguous data object on the local PE. The routines return after the data has been delivered to the dest
array on the local PE.

The dest and source data objects must conform to typing constraints, which are as follows:

Routine Data type of dest and source

shmem_getmem Fortran: Any noncharacter type. C: Any data type. nelems is
scaled in bytes.

shmem_get4, shmem_get32 Any noncharacter type that has a storage size equal to 32 bits.
shmem_get8 C: Any noncharacter type that has a storage size equal to 8 bits.

Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_get64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_get128 Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_CHARACTER_GET Elements of type character. nelems is the number of characters

to transfer. The actual character lengths of the source and dest
variables are ignored.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 29

SHMEM_COMPLEX_GET Elements of type complex of default size.
SHMEM_DOUBLE_GET Fortran: Elements of type double precision.
SHMEM_INTEGER_GET Elements of type integer.
SHMEM_LOGICAL_GET Elements of type logical.
SHMEM_REAL_GET Elements of type real.

Return Values
None.

Notes
See Section 3 for a definition of the term remotely accessible. If you are using Fortran, data types must be of
default size. For example, a real variable must be declared as REAL, REAL*4, or REAL(KIND=KIND(1.0)).

EXAMPLES

Consider this example for Fortran.
PROGRAM REDUCTION
INCLUDE "shmem.fh"

REAL VALUES, SUM
COMMON /C/ VALUES
REAL WORK
CALL SHMEM_INIT() ! ALLOW ANY NUMBER OF PES
VALUES = SHMEM_MY_PE() ! INITIALIZE IT TO SOMETHING
CALL SHMEM_BARRIER_ALL
SUM = 0.0
DO I = 0, SHMEM_N_PES()-1

CALL SHMEM_REAL_GET(WORK, VALUES, (SHMEM_N_PES()()-1), I)
SUM = SUM + WORK

ENDDO
PRINT*,’PE ’,SHMEM_MY_PE(),’ COMPUTED SUM=’,SUM
CALL SHMEM_BARRIER_ALL
END

8.3.5 SHMEM_G

Copies one data item from a remote PE

SYNOPSIS

C11:
TYPE shmem_g(const TYPE *addr, int pe);

where TYPE is one of the standard RMA types specified by Table 1.

C/C++:
TYPE shmem_<TYPENAME>_g(const TYPE *addr, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 1.

DESCRIPTION

Arguments
IN addr The remotely accessible array element or scalar data object.
IN pe The number of the remote PE on which addr resides.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

30 8. OPENSHMEM LIBRARY API

API description
These routines provide a very low latency get capability for single elements of most basic types.

Return Values
Returns a single element of type specified in the synopsis.

Notes
None.

EXAMPLES

The following shmem_g example is for C/C++ programs:

#include <stdio.h>
#include <shmem.h>

long x = 10101;

int main(void)
{

int me, npes;
long y = -1;

shmem_init();
me = shmem_my_pe();
npes = shmem_n_pes();

if (me == 0)
y = shmem_g(&x, npes-1);

printf("%d: y = %ld\n", me, y);

return 0;
}

8.3.6 SHMEM_IGET

Copies strided data from a specified PE.

SYNOPSIS

C11:
void shmem_iget(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst, size_t nelems,

int pe);

where TYPE is one of the standard RMA types specified by Table 1.

C/C++:
void shmem_<TYPENAME>_iget(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst,

size_t nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 1.
void shmem_iget<SIZE>(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t

nelems, int pe);

where SIZE is one of 8, 16, 32, 64, 128.

FORTRAN:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 31

INTEGER dst, sst, nelems, pe

CALL SHMEM_COMPLEX_IGET(dest, source, dst, sst, nelems, pe)

CALL SHMEM_DOUBLE_IGET(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IGET4(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IGET8(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IGET32(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IGET64(dest, source, dst, sst, nelems, pe)

CALL SHMEM_IGET128(dest, source, dst, sst, nelems, pe)

CALL SHMEM_INTEGER_IGET(dest, source, dst, sst, nelems, pe)

CALL SHMEM_LOGICAL_IGET(dest, source, dst, sst, nelems, pe)

CALL SHMEM_REAL_IGET(dest, source, dst, sst, nelems, pe)

DESCRIPTION

Arguments
OUT dest Array to be updated on the local PE.
IN source Array containing the data to be copied on the remote PE.
IN dst The stride between consecutive elements of the dest array. The stride

is scaled by the element size of the dest array. A value of 1 indicates
contiguous data. dst must be of type ptrdiff_t. If you are calling from
Fortran, it must be a default integer value.

IN sst The stride between consecutive elements of the source array. The stride
is scaled by the element size of the source array. A value of 1 indicates
contiguous data. sst must be of type ptrdiff_t. If you are calling from
Fortran, it must be a default integer value.

IN nelems Number of elements in the dest and source arrays. nelems must be
of type size_t for C. If you are using Fortran, it must be a constant,
variable, or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. If you are
using Fortran, it must be a constant, variable, or array element of default
integer type.

API description
The iget routines provide a method for copying strided data elements from a symmetric array from a
specified remote PE to strided locations on a local array. The routines return when the data has been copied
into the local dest array.

The dest and source data objects must conform to typing constraints, which are as follows:

Routine Data type of dest and source

shmem_iget4, shmem_iget32 Any noncharacter type that has a storage size equal to 32 bits.
shmem_iget8 C: Any noncharacter type that has a storage size equal to 8 bits.

Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_iget64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_iget128 Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_COMPLEX_IGET Elements of type complex of default size.
SHMEM_DOUBLE_IGET Fortran: Elements of type double precision.
SHMEM_INTEGER_IGET Elements of type integer.
SHMEM_LOGICAL_IGET Elements of type logical.
SHMEM_REAL_IGET Elements of type real.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

32 8. OPENSHMEM LIBRARY API

Return Values
None.

Notes
If you are using Fortran, data types must be of default size. For example, a real variable must be declared
as REAL, REAL*4, or REAL(KIND=KIND(1.0)).

EXAMPLES

The following example uses shmem_logical_iget in a Fortran program.

PROGRAM STRIDELOGICAL
INCLUDE "shmem.fh"

LOGICAL SOURCE(10), DEST(5)
SAVE SOURCE ! SAVE MAKES IT REMOTELY ACCESSIBLE
DATA SOURCE /.T.,.F.,.T.,.F.,.T.,.F.,.T.,.F.,.T.,.F./
DATA DEST / 5*.F. /
CALL SHMEM_INIT()
IF (SHMEM_MY_PE() .EQ. 0) THEN

CALL SHMEM_LOGICAL_IGET(DEST, SOURCE, 1, 2, 5, 1)
PRINT*,’DEST AFTER SHMEM_LOGICAL_IGET:’,DEST

ENDIF
CALL SHMEM_BARRIER_ALL

8.4 Non-blocking Remote Memory Access Routines

8.4.1 SHMEM_PUT_NBI

The nonblocking put routines provide a method for copying data from a contiguous local data object to a data object
on a specified PE.

SYNOPSIS

C11:
void shmem_put_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 1.

C/C++:
void shmem_<TYPENAME>_put_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 1.
void shmem_put<SIZE>_nbi(void *dest, const void *source, size_t nelems, int pe);

where SIZE is one of 8, 16, 32, 64, 128.
void shmem_putmem_nbi(void *dest, const void *source, size_t nelems, int pe);

FORTRAN:
CALL SHMEM_CHARACTER_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_COMPLEX_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_DOUBLE_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_INTEGER_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_LOGICAL_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT4_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT8_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT32_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT64_NBI(dest, source, nelems, pe)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 33

CALL SHMEM_PUT128_NBI(dest, source, nelems, pe)

CALL SHMEM_PUTMEM_NBI(dest, source, nelems, pe)

CALL SHMEM_REAL_PUT_NBI(dest, source, nelems, pe)

DESCRIPTION

Arguments
OUT dest Data object to be updated on the remote PE. This data object must be

remotely accessible.
IN source Data object containing the data to be copied.
IN nelems Number of elements in the dest and source arrays. nelems must be

of type size_t for C. If you are using Fortran, it must be a constant,
variable, or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. If you are
using Fortran, it must be a constant, variable, or array element of default
integer type.

API description
The routines return after posting the operation. The operation is considered complete after a subsequent
call to shmem_quiet. At the completion of shmem_quiet, the data has been copied into the dest array on
the destination PE. The delivery of data words into the data object on the destination PE may occur in any
order. Furthermore, two successive put routines may deliver data out of order unless a call to shmem_fence
is introduced between the two calls.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

shmem_putmem_nbi Fortran: Any noncharacter type. C: Any data type. nelems is
scaled in bytes.

shmem_put4_nbi,
shmem_put32_nbi

Any noncharacter type that has a storage size equal to 32 bits.

shmem_put8_nbi C: Any noncharacter type that has a storage size equal to 8 bits.
Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_put64_nbi Any noncharacter type that has a storage size equal to 64 bits.
shmem_put128_nbi Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_CHARACTER_PUT_NBI Elements of type character. nelems is the number of characters

to transfer. The actual character lengths of the source and dest
variables are ignored.

SHMEM_COMPLEX_PUT_NBI Elements of type complex of default size.
SHMEM_DOUBLE_PUT_NBI Elements of type double precision.
SHMEM_INTEGER_PUT_NBI Elements of type integer.
SHMEM_LOGICAL_PUT_NBI Elements of type logical.
SHMEM_REAL_PUT_NBI Elements of type real.

Return Values
None.

Notes
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

34 8. OPENSHMEM LIBRARY API

8.4.2 SHMEM_GET_NBI

The nonblocking get routines provide a method for copying data from a contiguous remote data object on the specified
PE to the local data object.

SYNOPSIS

C11:
void shmem_get_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 1.

C/C++:
void shmem_<TYPENAME>_get_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 1.
void shmem_get<SIZE>_nbi(void *dest, const void *source, size_t nelems, int pe);

where SIZE is one of 8, 16, 32, 64, 128.
void shmem_getmem_nbi(void *dest, const void *source, size_t nelems, int pe);

FORTRAN:
INTEGER nelems, pe

CALL SHMEM_CHARACTER_GET_NBI(dest, source, nelems, pe)

CALL SHMEM_COMPLEX_GET_NBI(dest, source, nelems, pe)

CALL SHMEM_DOUBLE_GET_NBI(dest, source, nelems, pe)

CALL SHMEM_GET4_NBI(dest, source, nelems, pe)

CALL SHMEM_GET8_NBI(dest, source, nelems, pe)

CALL SHMEM_GET32_NBI(dest, source, nelems, pe)

CALL SHMEM_GET128_NBI(dest, source, nelems, pe)

CALL SHMEM_GETMEM_NBI(dest, source, nelems, pe)

CALL SHMEM_INTEGER_GET_NBI(dest, source, nelems, pe)

CALL SHMEM_LOGICAL_GET_NBI(dest, source, nelems, pe)

CALL SHMEM_REAL_GET_NBI(dest, source, nelems, pe)

DESCRIPTION

Arguments
OUT dest Local data object to be updated.
IN source Data object on the PE identified by pe that contains the data to be

copied. This data object must be remotely accessible.
IN nelems Number of elements in the dest and source arrays. nelems must be

of type size_t for C. If you are using Fortran, it must be a constant,
variable, or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. If you are
using Fortran, it must be a constant, variable, or array element of default
integer type.

API description
The get routines provide a method for copying a contiguous symmetric data object from a different PE to
a contiguous data object on the local PE. The routines return after posting the operation. The operation is
considered complete after a subsequent call to shmem_quiet. At the completion of shmem_quiet, the data
has been delivered to the dest array on the local PE.

The dest and source data objects must conform to typing constraints, which are as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 35

Routine Data type of dest and source

shmem_getmem_nbi Fortran: Any noncharacter type. C: Any data type. nelems is
scaled in bytes.

shmem_get4_nbi,
shmem_get32_nbi

Any noncharacter type that has a storage size equal to 32 bits.

shmem_get8_nbi C: Any noncharacter type that has a storage size equal to 8 bits.
Fortran: Any noncharacter type that has a storage size equal to
64 bits.

shmem_get64_nbi Any noncharacter type that has a storage size equal to 64 bits.
shmem_get128_nbi Any noncharacter type that has a storage size equal to 128 bits.
SHMEM_CHARACTER_GET_NBI Elements of type character. nelems is the number of characters

to transfer. The actual character lengths of the source and dest
variables are ignored.

SHMEM_COMPLEX_GET_NBI Elements of type complex of default size.
SHMEM_DOUBLE_GET_NBI Fortran: Elements of type double precision.
SHMEM_INTEGER_GET_NBI Elements of type integer.
SHMEM_LOGICAL_GET_NBI Elements of type logical.
SHMEM_REAL_GET_NBI Elements of type real.

Return Values
None.

Notes
See Section 3 for a definition of the term remotely accessible. If you are using Fortran, data types must be of
default size. For example, a real variable must be declared as REAL, REAL*4, or REAL(KIND=KIND(1.0)).

8.5 Atomic Memory Operations

An Atomic Memory Operation (AMO) is a one-sided communication mechanism that combines memory update oper-
ations with atomicity guarantees described in Section 4.2. Similar to the RMA routines, described in Section 8.3, the
AMOs are performed only on symmetric objects. OpenSHMEM defines the two types of AMO routines:

• The fetching routines return the original value of, and optionally update, the remote data object in a single atomic
operation. The routines return after the data has been fetched and delivered to the local PE.

The fetching operations include: SHMEM_FETCH, SHMEM_CSWAP, SHMEM_SWAP, SHMEM_FINC, and
SHMEM_FADD.

• The non-fetching atomic routines update the remote memory in a single atomic operation. A non-fetching atomic
routine starts the atomic operation and may return before the operation execution on the remote PE. To force
completion for these non-fetching atomic routines, shmem_quiet, shmem_barrier, or shmem_barrier_all can be
used by an OpenSHMEM program.

The non-fetching operations include: SHMEM_SET, SHMEM_INC and SHMEM_ADD.

Where appropriate compiler support is available, OpenSHMEM provides type-generic atomic memory operation
interfaces via C11 generic selection. The type-generic AMO routines each support the “standard AMO types” listed in
Table 2, except for shmem_fetch, shmem_set, and shmem_swap, which supports the “extended AMO types” listed in
Table 3.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

36 8. OPENSHMEM LIBRARY API

TYPE TYPENAME
int int
long long
long long longlong

Table 2: Standard AMO Types and Names

TYPE TYPENAME
float float
double double
int int
long long
long long longlong

Table 3: Extended AMO Types and Names

8.5.1 SHMEM_ADD

Performs an atomic add operation on a remote symmetric data object.

SYNOPSIS

C11:
void shmem_add(TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types specified by Table 2.

C/C++:
void shmem_<TYPENAME>_add(TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 2.

FORTRAN:
INTEGER pe

INTEGER*4 value_i4

CALL SHMEM_INT4_ADD(dest, value_i4, pe)

INTEGER*8 value_i8

CALL SHMEM_INT8_ADD(dest, value_i8, pe)

DESCRIPTION

Arguments
OUT dest The remotely accessible integer data object to be updated on the remote

PE. If you are using C/C++, the type of dest should match that implied
in the SYNOPSIS section.

IN value The value to be atomically added to dest. If you are using C/C++, the
type of value should match that implied in the SYNOPSIS section. If
you are using Fortran, it must be of type integer with an element size of
dest.

IN pe An integer that indicates the PE number upon which dest is to be up-
dated. If you are using Fortran, it must be a default integer value.

API description
The shmem_add routine performs an atomic add operation. It adds value to dest on PE pe and atomically
updates the dest without returning the value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 37

If you are using Fortran, dest must be of the following type:

Routine Data type of dest

SHMEM_INT4_ADD 4-byte integer
SHMEM_INT8_ADD 8-byte integer

Return Values
None.

Notes
The term remotely accessible is defined in Section 3.

EXAMPLES

#include <stdio.h>
#include <shmem.h>

int main(void)
{

int me, old;
static int dst;

shmem_init();
me = shmem_my_pe();

old = -1;
dst = 22;
shmem_barrier_all();

if (me == 1){
old = shmem_add(&dst, 44, 0);

}
shmem_barrier_all();
printf("%d: old = %d, dst = %d\n", me, old, dst);
return 0;

}

8.5.2 SHMEM_CSWAP

Performs an atomic conditional swap on a remote data object.

SYNOPSIS

C11:
TYPE shmem_cswap(TYPE *dest, TYPE cond, TYPE value, int pe);

where TYPE is one of the standard AMO types specified by Table 2.

C/C++:
TYPE shmem_<TYPENAME>_cswap(TYPE *dest, TYPE cond, TYPE value, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 2.

FORTRAN:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

38 8. OPENSHMEM LIBRARY API

INTEGER pe

INTEGER*4 SHMEM_INT4_CSWAP, cond_i4, value_i4, ires_i4

ires_i4 = SHMEM_INT4_CSWAP(dest, cond_i4, value_i4, pe)

INTEGER*8 SHMEM_INT8_CSWAP, cond_i8, value_i8, ires_i8

ires_i8 = SHMEM_INT8_CSWAP(dest, cond_i8, value_i8, pe)

DESCRIPTION

Arguments
OUT dest The remotely accessible integer data object to be updated on the remote

PE.
IN cond cond is compared to the remote dest value. If cond and the remote dest

are equal, then value is swapped into the remote dest. Otherwise, the
remote dest is unchanged. In either case, the old value of the remote
dest is returned as the routine return value. cond must be of the same
data type as dest.

IN value The value to be atomically written to the remote PE. value must be the
same data type as dest.

IN pe An integer that indicates the PE number upon which dest is to be up-
dated. If you are using Fortran, it must be a default integer value.

API description
The conditional swap routines conditionally update a dest data object on the specified PE and return the
prior contents of the data object in one atomic operation.
The dest and value data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and value

SHMEM_INT4_CSWAP 4-byte integer.
SHMEM_INT8_CSWAP 8-byte integer.

Return Values
The contents that had been in the dest data object on the remote PE prior to the conditional swap. Data type
is the same as the dest data type.

Notes
None.

EXAMPLES

The following call ensures that the first PE to execute the conditional swap will successfully write its PE number
to race_winner on PE 0.

#include <stdio.h>
#include <shmem.h>

int main(void)
{

static int race_winner = -1;
int oldval;
shmem_init();
oldval = shmem_cswap(&race_winner, -1, shmem_my_pe(), 0);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 39

if(oldval == -1) printf("pe %d was first\n",shmem_my_pe());
return 1;

}

8.5.3 SHMEM_SWAP

Performs an atomic swap to a remote data object.

SYNOPSIS

C11:
TYPE shmem_swap(TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types specified by Table 3.

C/C++:
TYPE shmem_<TYPENAME>_swap(TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types and has a corresponding TYPENAME specified by Table 3.

FORTRAN:
INTEGER SHMEM_SWAP, value, pe

ires = SHMEM_SWAP(dest, value, pe)

INTEGER*4 SHMEM_INT4_SWAP, value_i4, ires_i4

ires_i4 = SHMEM_INT4_SWAP(dest, value_i4, pe)

INTEGER*8 SHMEM_INT8_SWAP, value_i8, ires_i8

ires_i8 = SHMEM_INT8_SWAP(dest, value_i8, pe)

REAL*4 SHMEM_REAL4_SWAP, value_r4, res_r4

res_r4 = SHMEM_REAL4_SWAP(dest, value_r4, pe)

REAL*8 SHMEM_REAL8_SWAP, value_r8, res_r8

res_r8 = SHMEM_REAL8_SWAP(dest, value_r8, pe)

DESCRIPTION

Arguments
OUT dest The remotely accessible integer data object to be updated on the remote

PE. If you are using C/C++, the type of dest should match that implied
in the SYNOPSIS section.

IN value The value to be atomically written to the remote PE. value is the same
type as dest.

IN pe An integer that indicates the PE number on which dest is to be updated.
If you are using Fortran, it must be a default integer value.

API description
shmem_swap performs an atomic swap operation. It writes value into dest on PE and returns the previous
contents of dest as an atomic operation.

If you are using Fortran, dest must be of the following type:

Routine Data type of dest and source

SHMEM_SWAP Integer of default kind
SHMEM_INT4_SWAP 4-byte integer
SHMEM_INT8_SWAP 8-byte integer
SHMEM_REAL4_SWAP 4-byte real

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

40 8. OPENSHMEM LIBRARY API

SHMEM_REAL8_SWAP 8-byte real

Return Values
The content that had been at the dest address on the remote PE prior to the swap is returned.

Notes
None.

EXAMPLES

The example below swap values between odd numbered PEs and their right (modulo) neighbor and outputs the
result of swap.

#include <stdio.h>
#include <shmem.h>

int main(void)
{

long *dest;
int me, npes;
long swapped_val, new_val;

shmem_init();
me = shmem_my_pe();
npes = shmem_n_pes();
dest = (long *) shmem_malloc(sizeof (*dest));

*dest = me;
shmem_barrier_all();
new_val = me;
if (me & 1){

swapped_val = shmem_swap(dest, new_val, (me + 1) % npes);
printf("%d: dest = %ld, swapped = %ld\n", me, *dest, swapped_val);

}
shmem_free(dest);
return 0;

}

8.5.4 SHMEM_FINC

Performs an atomic fetch-and-increment operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_finc(TYPE *dest, int pe);

where TYPE is one of the standard AMO types specified by Table 2.

C/C++:
TYPE shmem_<TYPENAME>_finc(TYPE *dest, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 2.

FORTRAN:
INTEGER pe

INTEGER*4 SHMEM_INT4_FINC, ires_i4

ires_i4 = SHMEM_INT4_FINC(dest, pe)

INTEGER*8 SHMEM_INT8_FINC, ires_i8

ires_i8 = SHMEM_INT8_FINC(dest, pe)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 41

DESCRIPTION

Arguments

IN dest The remotely accessible integer data object to be updated on the remote
PE. The type of dest should match that implied in the SYNOPSIS sec-
tion.

IN pe An integer that indicates the PE number on which dest is to be updated.
If you are using Fortran, it must be a default integer value.

API description
These routines perform a fetch-and-increment operation. The dest on PE pe is increased by one and the
routine returns the previous contents of dest as an atomic operation.

If you are using Fortran, dest must be of the following type:

Routine Data type of dest and source

SHMEM_INT4_FINC 4-byte integer
SHMEM_INT8_FINC 8-byte integer

Return Values
The contents that had been at the dest address on the remote PE prior to the increment. The data type of
the return value is the same as the dest.

Notes
None.

EXAMPLES

The following shmem_finc example is for C/C++ programs:

#include <stdio.h>
#include <shmem.h>

int dst;

int main(void)
{

int me;
int old;

shmem_init();
me = shmem_my_pe();

old = -1;
dst = 22;
shmem_barrier_all();

if (me == 0)
old = shmem_finc(&dst, 1);

shmem_barrier_all();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

42 8. OPENSHMEM LIBRARY API

printf("%d: old = %d, dst = %d\n", me, old, dst);
return 0;

}

8.5.5 SHMEM_INC

Performs an atomic increment operation on a remote data object.

SYNOPSIS

C11:
void shmem_inc(TYPE *dest, int pe);

where TYPE is one of the standard AMO types specified by Table 2.

C/C++:
void shmem_<TYPENAME>_inc(TYPE *dest, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 2.

FORTRAN:
INTEGER pe

CALL SHMEM_INT4_INC(dest, pe)

CALL SHMEM_INT8_INC(dest, pe)

DESCRIPTION

Arguments

IN dest The remotely accessible integer data object to be updated on the remote
PE. The type of dest should match that implied in the SYNOPSIS sec-
tion.

IN pe An integer that indicates the PE number on which dest is to be updated.
If you are using Fortran, it must be a default integer value.

API description
These routines perform an atomic increment operation on the dest data object on PE.

If you are using Fortran, dest must be of the following type:

Routine Data type of dest and source

SHMEM_INT4_INC 4-byte integer
SHMEM_INT8_INC 8-byte integer

Return Values
None.

Notes
The term remotely accessible is defined in Section 3.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 43

EXAMPLES

The following shmem_inc example is for C/C++ programs:
#include <stdio.h>
#include <shmem.h>

int dst;

int main(void)
{

int me;

shmem_init();
me = shmem_my_pe();

dst = 74;
shmem_barrier_all();

if (me == 0)
shmem_inc(&dst, 1);

shmem_barrier_all();

printf("%d: dst = %d\n", me, dst);
return 0;

}

8.5.6 SHMEM_FADD

Performs an atomic fetch-and-add operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_fadd(TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types specified by Table 2.

C/C++:
TYPE shmem_<TYPENAME>_fadd(TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 2.

FORTRAN:
INTEGER pe

INTEGER*4 SHMEM_INT4_FADD, ires_i4, value_i4

ires_i4 = SHMEM_INT4_FADD(dest, value_i4, pe)

INTEGER*8 SHMEM_INT8_FADD, ires_i8, value_i8

ires_i8 = SHMEM_INT8_FADD(dest, value_i8, pe)

DESCRIPTION

Arguments

OUT dest The remotely accessible integer data object to be updated on the remote
PE. The type of dest should match that implied in the SYNOPSIS sec-
tion.

IN value The value to be atomically added to dest. The type of value should
match that implied in the SYNOPSIS section.

IN pe An integer that indicates the PE number on which dest is to be updated.
If you are using Fortran, it must be a default integer value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

44 8. OPENSHMEM LIBRARY API

API description
shmem_fadd routines perform an atomic fetch-and-add operation. An atomic fetch-and-add operation
fetches the old dest and adds value to dest without the possibility of another atomic operation on the dest
between the time of the fetch and the update. These routines add value to dest on pe and return the previous
contents of dest as an atomic operation.

If you are using Fortran, dest must be of the following type:

Routine Data type of dest and source

SHMEM_INT4_FADD 4-byte integer
SHMEM_INT8_FADD 8-byte integer

Return Values
The contents that had been at the dest address on the remote PE prior to the atomic addition operation. The
data type of the return value is the same as the dest.

Notes
None.

EXAMPLES

The following shmem_fadd example is for C/C++ programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

int me, old;
static int dst;

shmem_init();
me = shmem_my_pe();

old = -1;
dst = 22;
shmem_barrier_all();

if (me == 1){
old = shmem_fadd(&dst, 44, 0);

}
shmem_barrier_all();
printf("%d: old = %d, dst = %d\n", me, old, dst);
return 0;

}

8.5.7 SHMEM_FETCH

Atomically fetches the value of a remote data object.

SYNOPSIS

C11:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 45

TYPE shmem_fetch(const TYPE *dest, int pe);

where TYPE is one of the extended AMO types specified by Table 3.

C/C++:
TYPE shmem_<TYPENAME>_fetch(const TYPE *dest, int pe);

where TYPE is one of the extended AMO types and has a corresponding TYPENAME specified by Table 3.

FORTRAN:
INTEGER pe

INTEGER*4 SHMEM_INT4_FETCH, ires_i4

ires_i4 = SHMEM_INT4_FETCH(dest, pe)

INTEGER*8 SHMEM_INT8_FETCH, ires_i8

ires_i8 = SHMEM_INT8_FETCH(dest, pe)

REAL*4 SHMEM_REAL4_FETCH, res_r4

res_r4 = SHMEM_REAL4_FETCH(dest, pe)

REAL*8 SHMEM_REAL8_FETCH, res_r8

res_r8 = SHMEM_REAL8_FETCH(dest, pe)

DESCRIPTION

Arguments

IN dest The remotely accessible data object to be fetched from the remote PE.
IN pe An integer that indicates the PE number from which dest is to be

fetched.

API description
shmem_fetch performs an atomic fetch operation. It returns the contents of the dest as an atomic operation.

Return Values
The contents at the dest address on the remote PE. The data type of the return value is the same as the the
type of the remote data object.

Notes
None.

8.5.8 SHMEM_SET

Atomically sets the value of a remote data object.

SYNOPSIS

C11:
void shmem_set(TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types specified by Table 3.

C/C++:
void shmem_<TYPENAME>_set(TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types and has a corresponding TYPENAME specified by Table 3.

FORTRAN:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

46 8. OPENSHMEM LIBRARY API

INTEGER pe

INTEGER*4 SHMEM_INT4_SET, value_i4

CALL SHMEM_INT4_SET(dest, value_i4, pe)

INTEGER*8 SHMEM_INT8_SET, value_i8

CALL SHMEM_INT8_SET(dest, value_i8, pe)

REAL*4 SHMEM_REAL4_SET, value_r4

CALL SHMEM_REAL4_SET(dest, value_r4, pe)

REAL*8 SHMEM_REAL8_SET, value_r8

CALL SHMEM_REAL8_SET(dest, value_r8, pe)

DESCRIPTION

Arguments

IN dest The remotely accessible data object to be set on the remote PE.
IN value The value to be atomically written to the remote PE.
IN pe An integer that indicates the PE number on which dest is to be updated.

API description
shmem_set performs an atomic set operation. It writes the value into dest on pe as an atomic operation.

Return Values
None.

Notes
None.

8.6 Collective Routines

Collective routines are defined as communication or synchronization operations on a group of PEs called an Active set.
The collective routines require all PEs in the Active set to simultaneously call the routine. A PE that is not part of the
Active set calling the collective routines results in an undefined behavior. All collective routines have an Active set as
an input parameter except SHMEM_BARRIER_ALL. The SHMEM_BARRIER_ALL is called by all PEs of the Open-
SHMEM program.

The Active set is defined by the arguments PE_start, logPE_stride, and PE_size. PE_start is the starting PE
number, a log (base 2) of logPE_stride is the stride between PEs, and PE_size is the number of PEs participating in
the Active set. All PEs participating in the collective routines provide the same values for these arguments.

Another argument important to collective routines is pSync, which is a symmetric work array. All PEs participating
in a collective must pass the same pSync array. On completion of a collective call, the pSync is restored to its original
contents. The user is permitted to reuse a pSync array if all previous collective routines using the pSync array have
been completed by all participating PEs. One can use a synchronization collective routine such as SHMEM_BARRIER
to ensure completion of previous collective routines. The shmem_barrier routine allows the same pSync array to be
used on consecutive calls as long as the PE Active set does not change.

All collective routines defined in the specification are blocking. The collective routines return on completion. The
collective routines defined in the OpenSHMEM specification are:

SHMEM_BROADCAST

SHMEM_BARRIER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 47

SHMEM_BARRIER_ALL

SHMEM_COLLECT

SHMEM_FCOLLECT

Reduction Operations

SHMEM_ALLTOALL

SHMEM_ALLTOALLS

8.6.1 SHMEM_BARRIER_ALL

Registers the arrival of a PE at a barrier and suspends PE execution until all other PEs arrive at the barrier and all local
and remote memory updates are completed.

SYNOPSIS

C/C++:
void shmem_barrier_all(void);

FORTRAN:
CALL SHMEM_BARRIER_ALL

DESCRIPTION

Arguments

None.

API description
The shmem_barrier_all routine registers the arrival of a PE at a barrier. Barriers are a fast mechanism
for synchronizing all PEs at once. This routine causes a PE to suspend execution until all PEs have called
shmem_barrier_all. This routine must be used with PEs started by shmem_init.
Prior to synchronizing with other PEs, shmem_barrier_all ensures completion of all previously issued
memory stores and remote memory updates issued via OpenSHMEM AMOs and RMA routine calls such
as shmem_int_add, shmem_put32, shmem_put_nbi, and shmem_get_nbi.

Return Values
None.

Notes
None.

EXAMPLES

The following shmem_barrier_all example is for C/C++ programs:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

48 8. OPENSHMEM LIBRARY API

#include <stdio.h>
#include <shmem.h>

int x=1010;

int main(void)
{

int me, npes;

shmem_init();
me = shmem_my_pe();
npes = shmem_n_pes();

/*put to next PE in a circular fashion*/
shmem_int_p(&x, 4, (me+1)%npes);
/*synchronize all PEs*/
shmem_barrier_all();

printf("%d: x = %d\n", me, x);
return 0;

}

8.6.2 SHMEM_BARRIER

Performs all operations described in the shmem_barrier_all interface but with respect to a subset of PEs defined by
the Active set.

SYNOPSIS

C/C++:
void shmem_barrier(int PE_start, int logPE_stride, int PE_size, long *pSync);

FORTRAN:
INTEGER PE_start, logPE_stride, PE_size

INTEGER pSync(SHMEM_BARRIER_SYNC_SIZE)

CALL SHMEM_BARRIER(PE_start, logPE_stride, PE_size, pSync)

DESCRIPTION

Arguments

IN PE_start The lowest PE number of the Active set of PEs. PE_start must be of
type integer. If you are using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
Active set. logPE_stride must be of type integer. If you are using For-
tran, it must be a default integer value.

IN PE_size The number of PEs in the Active set. PE_size must be of type integer.
If you are using Fortran, it must be a default integer value.

IN pSync A symmetric work array. In C/C++, pSync must be of type long and
size SHMEM_BARRIER_SYNC_SIZE. In Fortran, pSync must be of
type integer and size SHMEM_BARRIER_SYNC_SIZE. If you are us-
ing Fortran, it must be a default integer type. Every element of this
array must be initialized to SHMEM_SYNC_VALUE before any of the
PEs in the Active set enter shmem_barrier the first time.

API description
shmem_barrier is a collective synchronization routine over an Active set. Control returns from shmem_barrier
after all PEs in the Active set (specified by PE_start, logPE_stride, and PE_size) have called shmem_barrier.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 49

As with all OpenSHMEM collective routines, each of these routines assumes that only PEs in the Active set
call the routine. If a PE not in the Active set calls an OpenSHMEM collective routine, undefined behavior
results.
The values of arguments PE_start, logPE_stride, and PE_size must be equal on all PEs in the Active set.
The same work array must be passed in pSync to all PEs in the Active set.
shmem_barrier ensures that all previously issued stores and remote memory updates, including AMOs and
RMA operations, done by any of the PEs in the Active set are complete before returning.
The same pSync array may be reused on consecutive calls to shmem_barrier if the same active PE set is
used.

Return Values
None.

Notes
If the pSync array is initialized at run time, be sure to use some type of synchronization, for example, a call
to shmem_barrier_all, before calling shmem_barrier for the first time.
If the Active set does not change, shmem_barrier can be called repeatedly with the same pSync array. No
additional synchronization beyond that implied by shmem_barrier itself is necessary in this case.

EXAMPLES

The following barrier example is for C/C++ programs:
#include <stdio.h>
#include <shmem.h>

long pSync[SHMEM_BARRIER_SYNC_SIZE];
int x = 10101;

int main(void)
{

int i, me, npes;

for (i = 0; i < SHMEM_BARRIER_SYNC_SIZE; i += 1){
pSync[i] = SHMEM_SYNC_VALUE;

}

shmem_init();
me = shmem_my_pe();
npes = shmem_n_pes();

if(me % 2 == 0){
x = 1000 + me;
/*put to next even PE in a circular fashion*/
shmem_int_p(&x, 4, (me+2)%npes);
/*synchronize all even pes*/
shmem_barrier(0, 1, (npes/2 + npes%2), pSync);

}
printf("%d: x = %d\n", me, x);
return 0;

}

8.6.3 SHMEM_BROADCAST

Broadcasts a block of data from one PE to one or more destination PEs.

SYNOPSIS

C/C++:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

50 8. OPENSHMEM LIBRARY API

void shmem_broadcast32(void *dest, const void *source, size_t nelems, int PE_root, int

PE_start, int logPE_stride, int PE_size, long *pSync);

void shmem_broadcast64(void *dest, const void *source, size_t nelems, int PE_root, int

PE_start, int logPE_stride, int PE_size, long *pSync);

FORTRAN:
INTEGER nelems, PE_root, PE_start, logPE_stride, PE_size

INTEGER pSync(SHMEM_BCAST_SYNC_SIZE)

CALL SHMEM_BROADCAST4(dest, source, nelems, PE_root, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_BROADCAST8(dest, source, nelems, PE_root, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_BROADCAST32(dest, source, nelems, PE_root, PE_start, logPE_stride, PE_size,pSync)

CALL SHMEM_BROADCAST64(dest, source, nelems, PE_root, PE_start, logPE_stride, PE_size,pSync)

DESCRIPTION

Arguments

OUT dest A symmetric data object.
IN source A symmetric data object that can be of any data type that is permissible

for the dest argument.
IN nelems The number of elements in source. For shmem_broadcast32 and

shmem_broadcast4, this is the number of 32-bit halfwords. nelems
must be of type size_t in C. If you are using Fortran, it must be a default
integer value.

IN PE_root Zero-based ordinal of the PE, with respect to the Active set, from which
the data is copied. Must be greater than or equal to 0 and less than
PE_size. PE_root must be of type integer. If you are using Fortran, it
must be a default integer value.

IN PE_start The lowest PE number of the Active set of PEs. PE_start must be of
type integer. If you are using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
Active set. log_PE_stride must be of type integer. If you are using
Fortran, it must be a default integer value.

IN PE_size The number of PEs in the Active set. PE_size must be of type integer.
If you are using Fortran, it must be a default integer value.

IN pSync A symmetric work array. In C/C++, pSync must be of type long and
size SHMEM_BCAST_SYNC_SIZE. In Fortran, pSync must be of type
integer and size SHMEM_BCAST_SYNC_SIZE. Every element of this
array must be initialized with the value SHMEM_SYNC_VALUE (in
C/C++) or SHMEM_SYNC_VALUE (in Fortran) before any of the PEs
in the Active set enter shmem_broadcast.

API description
OpenSHMEM broadcast routines are collective routines. They copy data object source on the proces-
sor specified by PE_root and store the values at dest on the other PEs specified by the triplet PE_start,
logPE_stride, PE_size. The data is not copied to the dest area on the root PE.
As with all OpenSHMEM collective routines, each of these routines assumes that only PEs in the Active set
call the routine. If a PE not in the Active set calls an OpenSHMEM collective routine, undefined behavior
results.
The values of arguments PE_root, PE_start, logPE_stride, and PE_size must be equal on all PEs in the
Active set. The same dest and source data objects and the same pSync work array must be passed to all PEs
in the Active set.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 51

Before any PE calls a broadcast routine, you must ensure that the following conditions exist (synchroniza-
tion via a barrier or some other method is often needed to ensure this): The pSync array on all PEs in
the Active set is not still in use from a prior call to a broadcast routine. The dest array on all PEs in the
Active set is ready to accept the broadcast data.
Upon return from a broadcast routine, the following are true for the local PE: If the current PE is not the
root PE, the dest data object is updated. The values in the pSync array are restored to the original values.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

shmem_broadcast8,
shmem_broadcast64

Any noncharacter type that has an element size of 64 bits. No
Fortran derived types or C/C++ structures are allowed.

shmem_broadcast4,
shmem_broadcast32

Any noncharacter type that has an element size of 32 bits. No
Fortran derived types or C/C++ structures are allowed.

Return Values
None.

Notes
All OpenSHMEM broadcast routines restore pSync to its original contents. Multiple calls to OpenSHMEM
routines that use the same pSync array do not require that pSync be reinitialized after the first call.
You must ensure the that the pSync array is not being updated by any PE in the Active set while any of the
PEs participates in processing of an OpenSHMEM broadcast routine. Be careful to avoid these situations:
If the pSync array is initialized at run time, some type of synchronization is needed to ensure that all PEs
in the Active set have initialized pSync before any of them enter an OpenSHMEM routine called with the
pSync synchronization array. A pSync array may be reused on a subsequent OpenSHMEM broadcast rou-
tine only if none of the PEs in the Active set are still processing a prior OpenSHMEM broadcast routine call
that used the same pSync array. In general, this can be ensured only by doing some type of synchronization.

EXAMPLES

In the following examples, the call to shmem_broadcast64 copies source on PE 4 to dest on PEs 5, 6, and 7.

C/C++ example:

#include <stdio.h>
#include <stdlib.h>
#include <shmem.h>

#define NUM_ELEMS 4
long pSync[SHMEM_BCAST_SYNC_SIZE];
long source[NUM_ELEMS], dest[NUM_ELEMS];

int main(void)
{

int i, me, npes;

shmem_init();
me = shmem_my_pe();
npes = shmem_n_pes();

if (me == 0)
for (i = 0; i < NUM_ELEMS; i++)

source[i] = i;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

52 8. OPENSHMEM LIBRARY API

for (i=0; i < SHMEM_BCAST_SYNC_SIZE; i++) {
pSync[i] = SHMEM_SYNC_VALUE;

}
shmem_barrier_all(); /* Wait for all PEs to initialize pSync */

shmem_broadcast64(dest, source, NUM_ELEMS, 0, 0, 0, npes, pSync);
printf("%d: %ld", me, dest[0]);
for (i = 1; i < NUM_ELEMS; i++)

printf(", %ld", dest[i]);
printf("\n");
return 0;

}

Fortran example:

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_BCAST_SYNC_SIZE)
INTEGER DEST, SOURCE, NLONG, PE_ROOT, PE_START,
& LOGPE_STRIDE, PE_SIZE, PSYNC
COMMON /COM/ DEST, SOURCE

DATA PSYNC /SHMEM_BCAST_SYNC_SIZE*SHMEM_SYNC_VALUE/

CALL SHMEM_BROADCAST64(DEST, SOURCE, NLONG, 0, 4, 0, 4, PSYNC)

8.6.4 SHMEM_COLLECT, SHMEM_FCOLLECT

Concatenates blocks of data from multiple PEs to an array in every PE.

SYNOPSIS

C/C++:
void shmem_collect32(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

void shmem_collect64(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

void shmem_fcollect32(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

void shmem_fcollect64(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

FORTRAN:
INTEGER nelems

INTEGER PE_start, logPE_stride, PE_size

INTEGER pSync(SHMEM_COLLECT_SYNC_SIZE)

CALL SHMEM_COLLECT4(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_COLLECT8(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_COLLECT32(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_COLLECT64(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT4(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT8(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT32(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT64(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

DESCRIPTION

Arguments

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 53

OUT dest A symmetric array. The dest argument must be large enough to accept
the concatenation of the source arrays on all PEs. The data types are as
follows: For shmem_collect8, shmem_collect64, shmem_fcollect8, and
shmem_fcollect64, any data type with an element size of 64 bits. For-
tran derived types, Fortran character type, and C/C++ structures are not
permitted. For shmem_collect4, shmem_collect32, shmem_fcollect4,
and shmem_fcollect32, any data type with an element size of 32 bits.
Fortran derived types, Fortran character type, and C/C++ structures
are not permitted.

IN source A symmetric data object that can be of any type permissible for the dest
argument.

IN nelems The number of elements in the source array. nelems must be of type
size_t for C. If you are using Fortran, it must be a default integer value.

IN PE_start The lowest PE number of the Active set of PEs. PE_start must be of
type integer. If you are using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
Active set. logPE_stride must be of type integer. If you are using For-
tran, it must be a default integer value.

IN PE_size The number of PEs in the Active set. PE_size must be of type integer.
If you are using Fortran, it must be a default integer value.

IN pSync A symmetric work array. In C/C++, pSync must be of type long and
size SHMEM_COLLECT_SYNC_SIZE. In Fortran, pSync must be of
type integer and size SHMEM_COLLECT_SYNC_SIZE. If you are us-
ing Fortran, it must be a default integer value. Every element of this
array must be initialized with the value SHMEM_SYNC_VALUE in
C/C++ or SHMEM_SYNC_VALUE in Fortran before any of the PEs
in the Active set enter shmem_collect or shmem_fcollect.

API description
OpenSHMEM collect and fcollect routines concatenate nelems 64-bit or 32-bit data items from the source
array into the dest array, over the set of PEs defined by PE_start, log2PE_stride, and PE_size, in processor
number order. The resultant dest array contains the contribution from PE PE_start first, then the contribu-
tion from PE PE_start + PE_stride second, and so on. The collected result is written to the dest array for
all PEs in the Active set.
The fcollect routines require that nelems be the same value in all participating PEs, while the collect routines
allow nelems to vary from PE to PE.
As with all OpenSHMEM collective routines, each of these routines assumes that only PEs in the Active set
call the routine. If a PE not in the Active set and calls this collective routine, the behavior is undefined.
The values of arguments PE_start, logPE_stride, and PE_size must be equal on all PEs in the Active set.
The same dest and source arrays and the same pSync work array must be passed to all PEs in the Active set.
Upon return from a collective routine, the following are true for the local PE: The dest array is updated.
The values in the pSync array are restored to the original values.

Return Values
None.

Notes
All OpenSHMEM collective routines reset the values in pSync before they return, so a particular pSync
buffer need only be initialized the first time it is used.
You must ensure that the pSync array is not being updated on any PE in the Active set while any of the PEs
participate in processing of an OpenSHMEM collective routine. Be careful to avoid these situations: If the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

54 8. OPENSHMEM LIBRARY API

pSync array is initialized at run time, some type of synchronization is needed to ensure that all PEs in the
working set have initialized pSync before any of them enter an OpenSHMEM routine called with the pSync
synchronization array. A pSync array can be reused on a subsequent OpenSHMEM collective routine only
if none of the PEs in the Active set are still processing a prior OpenSHMEM collective routine call that
used the same pSync array. In general, this may be ensured only by doing some type of synchronization.
The collective routines operate on active PE sets that have a non-power-of-two PE_size with some perfor-
mance degradation. They operate with no performance degradation when nelems is a non-power-of-two
value.

EXAMPLES

The following shmem_collect example is for C/C++ programs:
#include <stdio.h>
#include <stdlib.h>
#include <shmem.h>

long pSync[SHMEM_COLLECT_SYNC_SIZE];
int source[2];

int main(void)
{

int i, me, npes;
int *dest;

shmem_init();
me = shmem_my_pe();
npes = shmem_n_pes();

source[0] = me * 2;
source[1] = me * 2 + 1;
dest = (int *)shmem_malloc(sizeof(int) * npes * 2);
for (i=0; i < SHMEM_COLLECT_SYNC_SIZE; i++) {

pSync[i] = SHMEM_SYNC_VALUE;
}
shmem_barrier_all(); /* Wait for all PEs to initialize pSync */

shmem_collect32(dest, source, 2, 0, 0, npes, pSync);
printf("%d: %d", me, dest[0]);
for (i = 1; i < npes * 2; i++)

printf(", %d", dest[i]);
printf("\n");
return 0;

}

The following SHMEM_COLLECT example is for Fortran programs:
INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_COLLECT_SYNC_SIZE)
DATA PSYNC /SHMEM_COLLECT_SYNC_SIZE*SHMEM_SYNC_VALUE/

CALL SHMEM_COLLECT4(DEST, SOURCE, 64, PE_START, LOGPE_STRIDE,
& PE_SIZE, PSYNC)

8.6.5 SHMEM_REDUCTIONS

Performs arithmetic and logical operations across a set of PEs.

SYNOPSIS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 55

AND
Performs a bitwise AND function across a set of processing elements (PEs).
C/C++:
void shmem_int_and_to_all(int *dest, const int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_and_to_all(long *dest, const long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longlong_and_to_all(long long *dest, const long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

void shmem_short_and_to_all(short *dest, const short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

FORTRAN:
CALL SHMEM_INT4_AND_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_AND_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

MAX
Performs a maximum function reduction across a set of processing elements (PEs).
C/C++:
void shmem_double_max_to_all(double *dest, const double *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_float_max_to_all(float *dest, const float *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_int_max_to_all(int *dest, const int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_max_to_all(long *dest, const long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longdouble_max_to_all(long double *dest, const long double *source, int nreduce,

int PE_start, int logPE_stride, int PE_size, long double *pWrk, long *pSync);

void shmem_longlong_max_to_all(long long *dest, const long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

void shmem_short_max_to_all(short *dest, const short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

FORTRAN:
CALL SHMEM_INT4_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_MAX_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

MIN
Performs a minimum function reduction across a set of processing elements (PEs).
C/C++:
void shmem_double_min_to_all(double *dest, const double *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_float_min_to_all(float *dest, const float *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, float *pWrk, long *pSync);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

56 8. OPENSHMEM LIBRARY API

void shmem_int_min_to_all(int *dest, const int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_min_to_all(long *dest, const long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longdouble_min_to_all(long double *dest, const long double *source, int nreduce,

int PE_start, int logPE_stride, int PE_size, long double *pWrk, long *pSync);

void shmem_longlong_min_to_all(long long *dest, const long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

void shmem_short_min_to_all(short *dest, const short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

FORTRAN:
CALL SHMEM_INT4_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_MIN_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

SUM
Performs a sum reduction across a set of processing elements (PEs).
C/C++:
void shmem_complexd_sum_to_all(double complex *dest, const double complex *source, int

nreduce, int PE_start, int logPE_stride, int PE_size, double complex *pWrk, long

*pSync);

void shmem_complexf_sum_to_all(float complex *dest, const float complex *source, int nreduce,

int PE_start, int logPE_stride, int PE_size, float complex *pWrk, long *pSync);

void shmem_double_sum_to_all(double *dest, const double *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_float_sum_to_all(float *dest, const float *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_int_sum_to_all(int *dest, const int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_sum_to_all(long *dest, const long *source, int nreduce, int PE_start, int

logPE_stride,int PE_size, long *pWrk, long *pSync);

void shmem_longdouble_sum_to_all(long double *dest, const long double *source, int nreduce,

int PE_start, int logPE_stride, int PE_size, long double *pWrk, long *pSync);

void shmem_longlong_sum_to_all(long long *dest, const long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

void shmem_short_sum_to_all(short *dest, const short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

FORTRAN:
CALL SHMEM_COMP4_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_COMP8_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT4_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 57

CALL SHMEM_REAL4_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_SUM_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

PROD
Performs a product reduction across a set of processing elements (PEs).
C/C++:
void shmem_complexd_prod_to_all(double complex *dest, const double complex *source, int

nreduce, int PE_start, int logPE_stride, int PE_size, double complex *pWrk, long

*pSync);

void shmem_complexf_prod_to_all(float complex *dest, const float complex *source, int

nreduce, int PE_start, int logPE_stride, int PE_size, float complex *pWrk, long *pSync);

void shmem_double_prod_to_all(double *dest, const double *source, int nreduce, int PE_start,

int logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_float_prod_to_all(float *dest, const float *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_int_prod_to_all(int *dest, const int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_prod_to_all(long *dest, const long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longdouble_prod_to_all(long double *dest, const long double *source, int nreduce,

int PE_start, int logPE_stride, int PE_size, long double *pWrk, long *pSync);

void shmem_longlong_prod_to_all(long long *dest, const long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

void shmem_short_prod_to_all(short *dest, const short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

FORTRAN:
CALL SHMEM_COMP4_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_COMP8_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT4_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_PROD_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

OR
Performs a bitwise OR function reduction across a set of processing elements (PEs).
C/C++:
void shmem_int_or_to_all(int *dest, const int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_or_to_all(long *dest, const long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longlong_or_to_all(long long *dest, const long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

58 8. OPENSHMEM LIBRARY API

void shmem_short_or_to_all(short *dest, const short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

FORTRAN:
CALL SHMEM_INT4_OR_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_OR_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

XOR
Performs a bitwise EXCLUSIVE OR reduction across a set of processing elements (PEs).
C/C++:
void shmem_int_xor_to_all(int *dest, const int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_xor_to_all(long *dest, const long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longlong_xor_to_all(long long *dest, const long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

void shmem_short_xor_to_all(short *dest, const short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

FORTRAN:
CALL SHMEM_INT4_XOR_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_XOR_TO_ALL(dest, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

DESCRIPTION

Arguments

IN dest A symmetric array, of length nreduce elements, to receive the result of
the reduction routines. The data type of dest varies with the version of
the reduction routine being called. When calling from C/C++, refer to
the SYNOPSIS section for data type information.

IN source A symmetric array, of length nreduce elements, that contains one ele-
ment for each separate reduction routine. The source argument must
have the same data type as dest.

IN nreduce The number of elements in the dest and source arrays. nreduce must
be of type integer. If you are using Fortran, it must be a default integer
value.

IN PE_start The lowest PE number of the Active set of PEs. PE_start must be of
type integer. If you are using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
Active set. logPE_stride must be of type integer. If you are using For-
tran, it must be a default integer value.

IN PE_size The number of PEs in the Active set. PE_size must be of type integer.
If you are using Fortran, it must be a default integer value.

IN pWrk A symmetric work array. The pWrk argument must have
the same data type as dest. In C/C++, this contains
max(nreduce/2 + 1, SHMEM_REDUCE_MIN_WRKDATA_SIZE)
elements. In Fortran, this contains max(nreduce/2 + 1,
SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 59

IN pSync A symmetric work array. In C/C++, pSync must be of type long and
size SHMEM_REDUCE_SYNC_SIZE. In Fortran, pSync must be of
type integer and size SHMEM_REDUCE_SYNC_SIZE. If you are using
Fortran, it must be a default integer value. Every element of this array
must be initialized with the value SHMEM_SYNC_VALUE (in C/C++)
or SHMEM_SYNC_VALUE (in Fortran) before any of the PEs in the
Active set enter the reduction routine.

API description
OpenSHMEM reduction routines compute one or more reductions across symmetric arrays on multiple
PEs. A reduction performs an associative binary routine across a set of values.
The nreduce argument determines the number of separate reductions to perform. The source array on all
PEs in the Active set provides one element for each reduction. The results of the reductions are placed in
the dest array on all PEs in the Active set. The Active set is defined by the PE_start, logPE_stride, PE_size
triplet.
The source and dest arrays may be the same array, but they may not be overlapping arrays.
As with all OpenSHMEM collective routines, each of these routines assumes that only PEs in the Active set
call the routine. If a PE not in the Active set calls an OpenSHMEM collective routine, undefined behavior
results.
The values of arguments nreduce, PE_start, logPE_stride, and PE_size must be equal on all PEs in the
Active set. The same dest and source arrays, and the same pWrk and pSync work arrays, must be passed to
all PEs in the Active set.
Before any PE calls a reduction routine, you must ensure that the following conditions exist (synchroniza-
tion via a barrier or some other method is often needed to ensure this): The pWrk and pSync arrays on all
PEs in the Active set are not still in use from a prior call to a collective OpenSHMEM routine. The dest
array on all PEs in the Active set is ready to accept the results of the reduction.
Upon return from a reduction routine, the following are true for the local PE: The dest array is updated.
The values in the pSync array are restored to the original values.

When calling from Fortran, the dest date types are as follows:

Routine Data type

shmem_int8_and_to_all Integer, with an element size of 8 bytes.
shmem_int4_and_to_all Integer, with an element size of 4 bytes.
shmem_comp8_max_to_all Complex, with an element size equal to two 8-byte real values.
shmem_int4_max_to_all Integer, with an element size of 4 bytes.
shmem_int8_max_to_all Integer, with an element size of 8 bytes.
shmem_real4_max_to_all Real, with an element size of 4 bytes.
shmem_real16_max_to_all Real, with an element size of 16 bytes.
shmem_int4_min_to_all Integer, with an element size of 4 bytes.
shmem_int8_min_to_all Integer, with an element size of 8 bytes.
shmem_real4_min_to_all Real, with an element size of 4 bytes.
shmem_real8_min_to_all Real, with an element size of 8 bytes.
shmem_real16_min_to_all Real,with an element size of 16 bytes.
shmem_comp4_sum_to_all Complex, with an element size equal to two 4-byte real values.
shmem_comp8_sum_to_all Complex, with an element size equal to two 8-byte real values.
shmem_int4_sum_to_all Integer, with an element size of 4 bytes.
shmem_int8_sum_to_all Integer, with an element size of 8 bytes..
shmem_real4_sum_to_all Real, with an element size of 4 bytes.
shmem_real8_sum_to_all Real, with an element size of 8 bytes.
shmem_real16_sum_to_all Real, with an element size of 16 bytes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

60 8. OPENSHMEM LIBRARY API

shmem_comp4_prod_to_all Complex, with an element size equal to two 4-byte real values.
shmem_comp8_prod_to_all Complex, with an element size equal to two 8-byte real values.
shmem_int4_prod_to_all Integer, with an element size of 4 bytes.
shmem_int8_prod_to_all Integer, with an element size of 8 bytes.
shmem_real4_prod_to_all Real, with an element size of 4 bytes.
shmem_real8_prod_to_all Real, with an element size of 8 bytes.
shmem_real16_prod_to_all Real, with an element size of 16 bytes.
shmem_int8_or_to_all Integer, with an element size of 8 bytes.
shmem_int4_or_to_all Integer, with an element size of 4 bytes.
shmem_int8_xor_to_all Integer, with an element size of 8 bytes.
shmem_int4_xor_to_all Integer, with an element size of 4 bytes.

Return Values
None.

Notes
All OpenSHMEM reduction routines reset the values in pSync before they return, so a particular pSync
buffer need only be initialized the first time it is used. You must ensure that the pSync array is not being
updated on any PE in the Active set while any of the PEs participate in processing of an OpenSHMEM
reduction routine. Be careful to avoid the following situations: If the pSync array is initialized at run time,
some type of synchronization is needed to ensure that all PEs in the working set have initialized pSync
before any of them enter an OpenSHMEM routine called with the pSync synchronization array. A pSync
or pWrk array can be reused in a subsequent reduction routine call only if none of the PEs in the Active set
are still processing a prior reduction routine call that used the same pSync or pWrk arrays. In general, this
can be assured only by doing some type of synchronization.

EXAMPLES

This Fortran reduction example statically initializes the pSync array and finds the logical AND of the integer
variable FOO across all even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
INTEGER*4 PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
INTEGER FOO, FOOAND
SAVE FOO, FOOAND, PWRK
INTRINSIC SHMEM_MY_PE()

FOO = SHMEM_MY_PE()
IF (MOD(SHMEM_MY_PE() .EQ. 0) THEN

IF (MOD(SHMEM_N_PES()(),2) .EQ. 0) THEN
CALL SHMEM_INT8_AND_TO_ALL(FOOAND, FOO, NR, 0, 1, NPES/2, &

PWRK, PSYNC)
ELSE

CALL SHMEM_INT8_AND_TO_ALL(FOOAND, FOO, NR, 0, 1, NPES/2+1, &
PWRK, PSYNC)

ENDIF
PRINT*,’Result on PE ’,SHMEM_MY_PE(),’ is ’,FOOAND

ENDIF

This Fortran example statically initializes the pSync array and finds the maximum value of real variable FOO
across all even PEs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 61

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL FOO, FOOMAX, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOMAX, PWRK
INTRINSIC SHMEM_MY_PE()

IF (MOD(SHMEM_MY_PE() .EQ. 0) THEN
CALL SHMEM_REAL8_MAX_TO_ALL(FOOMAX, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,SHMEM_MY_PE(),’ is ’,FOOMAX

ENDIF

This Fortran example statically initializes the pSync array and finds the minimum value of real variable FOO
across all the even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL FOO, FOOMIN, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOMIN, PWRK
INTRINSIC SHMEM_MY_PE()

IF (MOD(SHMEM_MY_PE() .EQ. 0) THEN
CALL SHMEM_REAL8_MIN_TO_ALL(FOOMIN, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,SHMEM_MY_PE(),’ is ’,FOOMIN

ENDIF

This Fortran example statically initializes the pSync array and finds the sum of the real variable FOO across all
even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL FOO, FOOSUM, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOSUM, PWRK
INTRINSIC SHMEM_MY_PE()

IF (MOD(SHMEM_MY_PE() .EQ. 0) THEN
CALL SHMEM_INT4_SUM_TO_ALL(FOOSUM, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,SHMEM_MY_PE(),’ is ’,FOOSUM

ENDIF

This Fortran example statically initializes the pSync array and finds the product of the real variable FOO across
all the even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL FOO, FOOPROD, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOPROD, PWRK
INTRINSIC SHMEM_MY_PE()

IF (MOD(SHMEM_MY_PE() .EQ. 0) THEN
CALL SHMEM_COMP8_PROD_TO_ALL(FOOPROD, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,SHMEM_MY_PE(),’ is ’,FOOPROD

ENDIF

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

62 8. OPENSHMEM LIBRARY API

This Fortran example statically initializes the pSync array and finds the logical OR of the integer variable FOO
across all even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
INTEGER FOO, FOOOR
COMMON /COM/ FOO, FOOOR, PWRK
INTRINSIC SHMEM_MY_PE()

IF (MOD(SHMEM_MY_PE() .EQ. 0) THEN
CALL SHMEM_INT8_OR_TO_ALL(FOOOR, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,SHMEM_MY_PE(),’ is ’,FOOOR

ENDIF

This Fortran example statically initializes the pSync array and computes the exclusive XOR of variable FOO
across all even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL FOO, FOOXOR, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOXOR, PWRK
INTRINSIC SHMEM_MY_PE()

IF (MOD(SHMEM_MY_PE() .EQ. 0) THEN
CALL SHMEM_REAL8_XOR_TO_ALL(FOOXOR, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,SHMEM_MY_PE(),’ is ’,FOOXOR

ENDIF

8.6.6 SHMEM_ALLTOALL

shmem_alltoall is a collective routine where each PE exchanges a fixed amount of data with all other PEs in the
Active set.

SYNOPSIS

C/C++:
void shmem_alltoall32(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

void shmem_alltoall64(void *dest, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

FORTRAN:
INTEGER pSync(SHMEM_ALLTOALL_SYNC_SIZE)

INTEGER PE_start, logPE_stride, PE_size, nelems

CALL SHMEM_ALLTOALL32(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_ALLTOALL64(dest, source, nelems, PE_start, logPE_stride, PE_size, pSync)

DESCRIPTION

Arguments

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 63

OUT dest A symmetric data object large enough to receive the combined total of
nelems elements from each PE in the Active set.

IN source A symmetric data object that contains nelems elements of data for each
PE in the Active set, ordered according to destination PE.

IN nelems The number of elements to exchange for each PE. nelems must be of
type size_t for C/C++. If you are using Fortran, it must be a default
integer value.

IN PE_start The lowest PE number of the Active set of PEs. PE_start must be of
type integer. If you are using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
Active set. logPE_stride must be of type integer. If you are using For-
tran, it must be a default integer value.

IN PE_size The number of PEs in the Active set. PE_size must be of type integer.
If you are using Fortran, it must be a default integer value.

IN pSync A symmetric work array. In C/C++, pSync must be of type long and
size SHMEM_ALLTOALL_SYNC_SIZE. In Fortran, pSync must be of
type integer and size SHMEM_ALLTOALL_SYNC_SIZE. If you are us-
ing Fortran, it must be a default integer value. Every element of this
array must be initialized with the value SHMEM_SYNC_VALUE be-
fore any of the PEs in the Active set enter the routine.

API description
The shmem_alltoall routines are collective routines. Each PE in the Active set exchanges nelems data
elements of size 32 bits (for shmem_alltoall32) or 64 bits (for shmem_alltoall64) with all other PEs in the
set. The data being sent and received are stored in a contiguous symmetric data object. The total size of
each PEs source object and dest object is nelems times the size of an element (32 bits or 64 bits) times
PE_size. The source object contains PE_size blocks of data (the size of each block defined by nelems) and
each block of data is sent to a different PE. PE i sends the jth block of its source object to PE j and that
block of data is placed in the ith block of the dest object of PE j.

As with all OpenSHMEM collective routines, this routine assumes that only PEs in the Active set call the
routine. If a PE not in the Active set calls an OpenSHMEM collective routine, undefined behavior results.

The values of arguments nelems, PE_start, logPE_stride, and PE_size must be equal on all PEs in the
Active set. The same dest and source data objects, and the same pSync work array must be passed to all
PEs in the Active set.

Before any PE calls a shmem_alltoall routine, the following conditions must exist (synchronization via a
barrier or some other method is often needed to ensure this): The pSync array on all PEs in the Active set
is not still in use from a prior call to a shmem_alltoall/s routine. The dest data object on all PEs in the
Active set is ready to accept the shmem_alltoall data.

Upon return from a shmem_alltoall routine, the following is true for the local PE: Its dest symmetric data
object is completely updated and the data has been copied out of the source data object. The values in the
pSync array are restored to the original values.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

shmem_alltoall64 64 bits aligned.
shmem_alltoall32 32 bits aligned.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

64 8. OPENSHMEM LIBRARY API

Return Values
None.

Notes
This routine restores pSync to its original contents. Multiple calls to OpenSHMEM routines that use the
same pSync array do not require that pSync be reinitialized after the first call. You must ensure the that the
pSync array is not being updated by any PE in the Active set while any of the PEs participates in processing
of an OpenSHMEM shmem_alltoall routine. Be careful to avoid these situations: If the pSync array is
initialized at run time, some type of synchronization is needed to ensure that all PEs in the Active set have
initialized pSync before any of them enter an OpenSHMEM routine called with the pSync synchronization
array. A pSync array may be reused on a subsequent OpenSHMEM shmem_alltoall routine only if none
of the PEs in the Active set are still processing a prior OpenSHMEM shmem_alltoall routine call that used
the same pSync array. In general, this can be ensured only by doing some type of synchronization.

EXAMPLES

This example shows a shmem_alltoall64 on two long elements among all PEs.

#include <shmem.h>
#include <stdio.h>

long pSync[SHMEM_ALLTOALL_SYNC_SIZE];

int main(void)
{

int64_t *source, *dest;
int i, count, pe;

shmem_init();

count = 2;
dest = (int64_t*) shmem_malloc(count * shmem_n_pes() * sizeof(int64_t));
source = (int64_t*) shmem_malloc(count * shmem_n_pes() * sizeof(int64_t));

/* assign source values */
for (pe=0; pe <shmem_n_pes(); pe++){

for (i=0; i<count; i++){
source[(pe*count)+i] = shmem_my_pe() + pe;
dest[(pe*count)+i] = 9999;

}
}

for (i=0; i< SHMEM_ALLTOALL_SYNC_SIZE; i++) {
pSync[i] = SHMEM_SYNC_VALUE;

}
/* wait for all PEs to initialize pSync */
shmem_barrier_all();

/* alltoall on all PES */
shmem_alltoall64(dest, source, count, 0, 0, shmem_n_pes(), pSync);

/* verify results */
for (pe=0; pe<shmem_n_pes(); pe++) {

for (i=0; i<count; i++){
if (dest[(pe*count)+i] != shmem_my_pe() + pe) {
printf("[%d] ERROR: dest[%d]=%ld, should be %d\n",

shmem_my_pe(),(pe*count)+i,dest[(pe*count)+i],
shmem_n_pes() + pe);

}
}

}

shmem_barrier_all();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 65

shmem_free(dest);
shmem_free(source);
shmem_finalize();
return 0;

}

8.6.7 SHMEM_ALLTOALLS

shmem_alltoalls is a collective routine where each PE exchanges a fixed amount of strided data with all other PEs in
the Active set.

SYNOPSIS

C/C++:
void shmem_alltoalls32(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t

nelems, int PE_start, int logPE_stride, int PE_size, long *pSync);

void shmem_alltoalls64(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t

nelems, int PE_start, int logPE_stride, int PE_size, long *pSync);

FORTRAN:
INTEGER pSync(SHMEM_ALLTOALLS_SYNC_SIZE)

INTEGER dst, sst, PE_start, logPE_stride, PE_size

INTEGER nelems

CALL SHMEM_ALLTOALLS32(dest, source, dst, sst, nelems, PE_start, logPE_stride, PE_size, pSync

)

CALL SHMEM_ALLTOALLS64(dest, source, dst, sst, nelems, PE_start, logPE_stride, PE_size, pSync

)

DESCRIPTION

Arguments

OUT dest A symmetric data object large enough to receive the combined total of
nelems elements from each PE in the Active set.

IN source A symmetric data object that contains nelems elements of data for each
PE in the Active set, ordered according to destination PE.

IN dst The stride between consecutive elements of the dest data object. The
stride is scaled by the element size. A value of 1 indicates contiguous
data. dst must be of type ptrdiff_t. If you are using Fortran, it must be
a default integer value.

IN sst The stride between consecutive elements of the source data object. The
stride is scaled by the element size. A value of 1 indicates contiguous
data. sst must be of type ptrdiff_t. If you are using Fortran, it must be a
default integer value.

IN nelems The number of elements to exchange for each PE. nelems must be of
type size_t for C/C++. If you are using Fortran, it must be a default
integer value.

IN PE_start The lowest PE number of the Active set of PEs. PE_start must be of
type integer. If you are using Fortran, it must be a default integer value.

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
Active set. logPE_stride must be of type integer. If you are using For-
tran, it must be a default integer value.

IN PE_size The number of PEs in the Active set. PE_size must be of type integer.
If you are using Fortran, it must be a default integer value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

66 8. OPENSHMEM LIBRARY API

IN pSync A symmetric work array. In C/C++, pSync must be of type long and
size SHMEM_ALLTOALLS_SYNC_SIZE. In Fortran, pSync must be of
type integer and size SHMEM_ALLTOALLS_SYNC_SIZE. If you are
using Fortran, it must be a default integer value. Every element of this
array must be initialized with the value SHMEM_SYNC_VALUE before
any of the PEs in the Active set enter the routine.

API description
The shmem_alltoalls routines are collective routines. Each PE in the Active set exchanges nelems strided
data elements of size 32 bits (for shmem_alltoalls32) or 64 bits (for shmem_alltoalls64) with all other PEs
in the set. Both strides, dst and sst, must be greater than or equal to 1. The sst*jth block sent from PE i to
PE j is placed in the dst*ith block of the dest data object on PE j.
As with all OpenSHMEM collective routines, these routines assume that only PEs in the Active set call the
routine. If a PE not in the Active set calls an OpenSHMEM collective routine, undefined behavior results.
The values of arguments dst, sst, nelems, PE_start, logPE_stride, and PE_size must be equal on all PEs in
the Active set. The same dest and source data objects, and the same pSync work array must be passed to all
PEs in the Active set.
Before any PE calls to a shmem_alltoalls routine, the following conditions must exist (synchronization via
a barrier or some other method is often needed to ensure this): The pSync array on all PEs in the Active set
is not still in use from a prior call to a shmem_alltoalls routine. The dest data object on all PEs in the
Active set is ready to accept the shmem_alltoalls data.
Upon return from a shmem_alltoalls routine, the following is true for the local PE: Its dest symmetric data
object is completely updated and the data has been copied out of the source data object. The values in the
pSync array are restored to the original values.

The dest and source data objects must conform to certain typing constraints, which are as follows:

Routine Data type of dest and source

shmem_alltoalls64 64 bits aligned.
shmem_alltoalls32 32 bits aligned.

Return Values
None.

Notes
This routine restores pSync to its original contents. Multiple calls to OpenSHMEM routines that use the
same pSync array do not require that pSync be reinitialized after the first call. You must ensure the that the
pSync array is not being updated by any PE in the Active set while any of the PEs participates in processing
of an OpenSHMEM shmem_alltoalls routine. Be careful to avoid these situations: If the pSync array is
initialized at run time, some type of synchronization is needed to ensure that all PEs in the Active set have
initialized pSync before any of them enter an OpenSHMEM routine called with the pSync synchronization
array. A pSync array may be reused on a subsequent OpenSHMEM shmem_alltoalls routine only if none
of the PEs in the Active set are still processing a prior OpenSHMEM shmem_alltoalls routine call that used
the same pSync array. In general, this can be ensured only by doing some type of synchronization.

EXAMPLES

This example shows a shmem_alltoalls64 on two long elements among all PEs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 67

#include <shmem.h>
#include <stdio.h>

long pSync[SHMEM_ALLTOALLS_SYNC_SIZE];

int main(void)
{

int64_t *source, *dest;
int i, count, pe;

shmem_init();

count = 2;
dest = (int64_t*) shmem_malloc(count * shmem_n_pes() * sizeof(int64_t));
source = (int64_t*) shmem_malloc(count * shmem_n_pes() * sizeof(int64_t));

/* assign source values */
for (pe=0; pe <shmem_n_pes(); pe++){

for (i=0; i<count; i++){
source[(pe*count)+i] = shmem_my_pe() + pe;
dest[(pe*count)+i] = 9999;

}
}

for (i=0; i< SHMEM_ALLTOALLS_SYNC_SIZE; i++) {
pSync[i] = SHMEM_SYNC_VALUE;

}
/* wait for all PEs to initialize pSync */
shmem_barrier_all();

/* alltoalls on all PES */
shmem_alltoalls64(dest, source, 1, 1, count, 0, 0, shmem_n_pes(), pSync);

/* verify results */
for (pe=0; pe<shmem_n_pes(); pe++) {

for (i=0; i<count; i++){
if (dest[(pe*count)+i] != shmem_my_pe() + pe) {
printf("[%d] ERROR: dest[%d]=%ld, should be %d\n",

shmem_my_pe(),(pe*count)+i,dest[(pe*count)+i],
shmem_n_pes() + pe);

}
}

}

shmem_barrier_all();
shmem_free(dest);
shmem_free(source);
shmem_finalize();
return 0;

}

8.7 Point-To-Point Synchronization Routines

The following section discusses OpenSHMEM APIs that provides a mechanism for synchronization between two PEs
based on the value of a symmetric data object.

8.7.1 SHMEM_WAIT

Wait for a variable on the local PE to change.

SYNOPSIS

C/C++:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

68 8. OPENSHMEM LIBRARY API

void shmem_int_wait(volatile int *ivar, int cmp_value);

void shmem_int_wait_until(volatile int *ivar, int cmp, int cmp_value);

void shmem_long_wait(volatile long *ivar, long cmp_value);

void shmem_long_wait_until(volatile long *ivar, int cmp, long cmp_value);

void shmem_longlong_wait(volatile long long *ivar, long long cmp_value);

void shmem_longlong_wait_until(volatile long long *ivar, int cmp, long long cmp_value);

void shmem_short_wait(volatile short *ivar, short cmp_value);

void shmem_short_wait_until(volatile short *ivar, int cmp, short cmp_value);

void shmem_wait(volatile long *ivar, long cmp_value);

void shmem_wait_until(volatile long *ivar, int cmp, long cmp_value);

FORTRAN:
CALL SHMEM_INT4_WAIT(ivar, cmp_value)

CALL SHMEM_INT4_WAIT_UNTIL(ivar, cmp, cmp_value)

CALL SHMEM_INT8_WAIT(ivar, cmp_value)

CALL SHMEM_INT8_WAIT_UNTIL(ivar, cmp, cmp_value)

CALL SHMEM_WAIT(ivar, cmp_value)

CALL SHMEM_WAIT_UNTIL(ivar, cmp, cmp_value)

DESCRIPTION

Arguments

OUT ivar A remotely accessible integer variable that is being updated by another
PE. If you are using C/C++, the type of ivar should match that implied
in the SYNOPSIS section.

IN cmp The compare operator that compares ivar with cmp_value. cmp must
be of type integer. If you are using Fortran, it must be of default kind.
If you are using C/C++, the type of cmp should match that implied in
the SYNOPSIS section.

IN cmp_value cmp_value must be of type integer. If you are using C/C++, the type of
cmp_value should match that implied in the SYNOPSIS section. If you
are using Fortran, cmp_value must be an integer of the same size and
kind as ivar.

API description
shmem_wait and shmem_wait_until wait for ivar to be changed by a remote write or an atomic operation
issued by a different PE. These routines can be used for point-to-point direct synchronization. A call
to shmem_wait does not return until some other PE writes a value, not equal to cmp_value, into ivar on
the waiting PE. A call to shmem_wait_until does not return until some other PE changes ivar to satisfy
the condition implied by cmp and cmp_value. This mechanism is useful when a PE needs to tell another
PE that it has completed some action. The shmem_wait routines return when ivar is no longer equal to
cmp_value. The shmem_wait_until routines return when the compare condition is true. The compare
condition is defined by the ivar argument compared with the cmp_value using the comparison operator,
cmp.

If you are using Fortran, ivar must be a specific sized integer type according to the routine being called, as
follows:

Routine Data type

shmem_wait, shmem_wait_until default INTEGER
shmem_int4_wait,
shmem_int4_wait_until

INTEGER*4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 69

shmem_int8_wait,
shmem_int8_wait_until

INTEGER*8

The following cmp values are supported:

CMP Value Comparison

C/C++:
SHMEM_CMP_EQ Equal
SHMEM_CMP_NE Not equal
SHMEM_CMP_GT Greater than
SHMEM_CMP_LE Less than or equal to
SHMEM_CMP_LT Less than
SHMEM_CMP_GE Greater than or equal to

Fortran:
SHMEM_CMP_EQ Equal
SHMEM_CMP_NE Not equal
SHMEM_CMP_GT Greater than
SHMEM_CMP_LE Less than or equal to
SHMEM_CMP_LT Less than
SHMEM_CMP_GE Greater than or equal to

Return Values
None.

Notes
None.

Note to implementors
Implementations must ensure that shmem_wait and shmem_wait_until do not return before the update of
the memory indicated by ivar is fully complete. Partial updates to the memory must not cause shmem_wait
or shmem_wait_until to return.

EXAMPLES

The following call returns when variable ivar is not equal to 100:

INCLUDE "shmem.fh"

INTEGER*8 IVAR
CALL SHMEM_INT8_WAIT(IVAR, INTEGER*8(100))

The following call to SHMEM_INT8_WAIT_UNTIL is equivalent to the call to SHMEM_INT8_WAIT in exam-
ple 1:

INCLUDE "shmem.fh"

INTEGER*8 IVAR
CALL SHMEM_INT8_WAIT_UNTIL(IVAR, SHMEM_CMP_NE, INTEGER*8(100))

The following C/C++ call waits until the sign bit in ivar is set by a transfer from a remote PE:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

70 8. OPENSHMEM LIBRARY API

#include <stdio.h>
#include <shmem.h>

int ivar;
shmem_int_wait_until(&ivar, SHMEM_CMP_LT, 0);

The following Fortran example is in the context of a subroutine:

INCLUDE "shmem.fh"

SUBROUTINE EXAMPLE()
INTEGER FLAG_VAR
COMMON/FLAG/FLAG_VAR
. . .
FLAG_VAR = FLAG_VALUE ! initialize the event variable
. . .
IF (FLAG_VAR .EQ. FLAG_VALUE) THEN

CALL SHMEM_WAIT(FLAG_VAR, FLAG_VALUE)
ENDIF
FLAG_VAR = FLAG_VALUE ! reset the event variable for next time
. . .
END

8.8 Memory Ordering Routines

The following section discusses OpenSHMEM APIs that provide mechanisms to ensure ordering and/or delivery of
Put, AMO, and memory store routines to symmetric data objects.

8.8.1 SHMEM_FENCE

Assures ordering of delivery of Put, AMOs, and memory store routines to symmetric data objects.

SYNOPSIS

C/C++:
void shmem_fence(void);

FORTRAN:
CALL SHMEM_FENCE

DESCRIPTION

Arguments
None.

API description
This routine assures ordering of delivery of Put, AMOs, and memory store routines to symmetric data
objects. All Put, AMOs, and memory store routines to symmetric data objects issued to a particular remote
PE prior to the call to shmem_fence are guaranteed to be delivered before any subsequent Put, AMOs,
and memory store routines to symmetric data objects to the same PE. shmem_fence guarantees order of
delivery, not completion.

Return Values
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 71

Notes
shmem_fence only provides per-PE ordering guarantees and does not guarantee completion of delivery.
There is a subtle difference between shmem_fence and shmem_quiet, in that, shmem_quiet guarantees
completion of Put, AMOs, and memory store routines to symmetric data objects which makes the updates
visible to all other PEs.
The shmem_quiet routine should be called if completion of PUT, AMOs, and memory store routines to
symmetric data objects is desired when multiple remote PEs are involved.

EXAMPLES

The following shmem_fence example is for C/C++ programs:

#include <stdio.h>
#include <shmem.h>

long dest[10] = {0};
int targ = 0;

int main(void)
{

long source[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int src = 99;
shmem_init();
if (shmem_my_pe() == 0) {

shmem_long_put(dest, source, 10, 1); /*put1*/
shmem_long_put(dest, source, 10, 2); /*put2*/
shmem_fence();
shmem_int_put(&targ, &src, 1, 1); /*put3*/
shmem_int_put(&targ, &src, 1, 2); /*put4*/

}
shmem_barrier_all(); /* sync sender and receiver */
printf("dest[0] on PE %d is %ld\n", shmem_my_pe(), dest[0]);
return 1;

}

Put1 will be ordered to be delivered before put3 and put2 will be ordered to be delivered before put4.

8.8.2 SHMEM_QUIET

Waits for completion of all outstanding Put, AMOs, memory store, and non-blocking Put and Get routines to symmetric
data objects issued by a PE.

SYNOPSIS

C/C++:
void shmem_quiet(void);

FORTRAN:
CALL SHMEM_QUIET

DESCRIPTION

Arguments
None.

API description
The shmem_quiet routine ensures completion of Put, AMOs, memory store, and non-blocking Put and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

72 8. OPENSHMEM LIBRARY API

Get routines on symmetric data objects issued by the calling PE. All Put, AMOs, memory store, and non-
blocking Put and Get routines to symmetric data objects are guaranteed to be completed and visible to all
PEs when shmem_quiet returns.

Return Values
None.

Notes
shmem_quiet is most useful as a way of ensuring completion of several Put, AMOs, memory store, and non-
blocking Put and Get routines to symmetric data objects initiated by the calling PE. For example, you might
use shmem_quiet to await delivery of a block of data before issuing another Put or non-blocking Put rou-
tine, which sets a completion flag on another PE. shmem_quiet is not usually needed if shmem_barrier_all
or shmem_barrier are called. The barrier routines wait for the completion of outstanding writes (Put, AMO,
memory stores, and nonblocking Put and Get routines) to symmetric data objects on all PEs.

EXAMPLES

The following example uses shmem_quiet in a C/C++ program:

#include <stdio.h>
#include <shmem.h>

long dest[3] = {0};
int targ = 0;
long source[3] = {1, 2, 3};
int src = 90;

int main(void)
{

long x[3] = {0};
int y = 0;

shmem_init();
if (shmem_my_pe() == 0) {

shmem_long_put(dest, source, 3, 1); /*put1*/
shmem_int_put(&targ, &src, 1, 2); /*put2*/

shmem_quiet();

shmem_long_get(x, dest, 3, 1); /*gets updated value from dest on PE 1 to local array x

*/
shmem_int_get(&y, &targ, 1, 2); /*gets updated value from targ on PE 2 to local
variable y*/
printf("x: {%ld,%ld,%ld}\n",x[0],x[1],x[2]); /*x: {1,2,3}*/
printf("y: %d\n", y); /*y: 90*/

shmem_int_put(&targ, &src, 1, 1); /*put3*/
shmem_int_put(&targ, &src, 1, 2); /*put4*/

}
shmem_barrier_all(); /* sync sender and receiver */
return 0;

}

Put1 and put2 will be completed and visible before put3 and put4.

8.8.3 Synchronization and Communication Ordering in OpenSHMEM

When using the OpenSHMEM API, synchronization, ordering, and completion of communication become critical.
The updates via Put routines, AMOs and store routines on symmetric data cannot be guaranteed until some form of
synchronization or ordering is introduced by the program user. The table below gives the different synchronization and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 73

ordering choices, and the situations where they may be useful.

OpenSHMEM API Working of OpenSHMEM API
Point-to-point synchro-
nization
shmem_wait,
shmem_wait_until PE 0 PE 1

shmem_int_wait_until(...)
is completed

shmem_int_p (addr, value, PE 1)

shmem_int_wait_until
(addr, _SHMEM_CMP_EQ, value)

shmem_wait is a blocking
operation therefore it waits

until value in addr is updated

The addr is updated to value

Waits for a symmetric variable to be updated by a remote PE. Should be used when
computation on the local PE cannot proceed without the value that the remote PE
is to update.

Ordering puts issued by
a local PE
shmem_fence

PE 0 PE 1

shmem_int_p (addr1, value1, PE 1)

shmem_fence()

shmem_int_p (addr2, value2, PE 2)

shmem_int_p (addr3, value3, PE 1)

shmem_int_p (addr4, value4, PE 1)

shmem_int_p (addr5, value5, PE 2)

PE 2

value2 is delivered to
PE2, before value5

value1 and value3
are delivered to PE1,

before value4

value4 will be
delivered after value1

and value3
value5 will be

delivered after value2

All Put routines, AMOs and store routines on symmetric data issued to same PE
are guaranteed to be delivered before Puts (to the same PE) issued after the fence
call.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

74 8. OPENSHMEM LIBRARY API

OpenSHMEM API Working of OpenSHMEM API
Ordering puts issued by
all PE
shmem_quiet

PE 0 PE 1

shmem_int_p (addr1, value1, PE 0)

shmem_quiet()

shmem_int_p (addr2, value2, PE 2)

shmem_int_p (addr3, value3, PE 0)

shmem_int_p (addr4, value4, PE 0)

shmem_int_p (addr5, value5, PE 2)

PE KPE 2

 PE K is any PE in the
system.

value1, value2, and value3
are delivered to target PEs
and visible for PE K after
the shmem_quiet() call.

All Put routines, AMOs and store routines on symmetric data issued by a local PE
to all remote PEs are guaranteed to be completed and visible once quiet returns.
This routine should be used when all remote writes issued by a local PE need to be
visible to all other PEs before the local PE proceeds.

Collective synchroniza-
tion over an Active set
shmem_barrier

Active Set

PE 0 PE 1

shmem_int_p (...)

shmem_barrier(...)

shmem_long_put(…)
shmem_int_add (...)

shmem_int_p (...)

shmem_long_p (...)

PE 2

All local and remote memory operations issued by PEs are guaranteed to be completed
before any PE returns from the call.

shmem_barrier(...)shmem_barrier(...)

shmem_int_p (...)

shmem_long_fadd(...)

shmem_int_get (...)

shmem_int_p (...)

PE K

shmem_int_get (...)

shmem_long_put(…)

All local and remote memory operations issued by all PEs within the Active set are
guaranteed to be completed before any PE in the Active set returns from the call.
Additionally, no PE my return from the barrier until all PEs in the Active set have
entered the same barrier call. This routine should be used when synchronization as
well as completion of all stores and remote memory updates via OpenSHMEM is
required over a sub set of the executing PEs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 75

OpenSHMEM API Working of OpenSHMEM API
Collective synchroniza-
tion over all PEs
shmem_barrier_all

All PEs

PE 0 PE 1

shmem_int_p (...)

shmem_barrier_all(…)

shmem_long_put(…)
shmem_int_add (...)

shmem_int_p (...)

shmem_long_p (...)

PE 2

All local and remote memory operations issued by PEs are guaranteed to be completed before any PE returns from the call.

shmem_barrier_all(…)shmem_barrier_all(…)

shmem_int_p (...)

shmem_long_fadd(...)

shmem_int_get (...)

shmem_int_p (...)

PE K

shmem_int_get (...)

shmem_barrier_all(…)

shmem_long_p (...)

All local and remote memory operations issued by all PEs are guaranteed to be
completed before any PE returns from the call. Additionally no PE shall return
from the barrier until all PEs have entered the same shmem_barrier_all call. This
routine should be used when synchronization as well as completion of all stores
and remote memory updates via OpenSHMEM is required over all PEs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

76 8. OPENSHMEM LIBRARY API

8.9 Distributed Locking Routines

The following section discusses OpenSHMEM locks as a mechanism to provide mutual exclusion. Three routines are
available for distributed locking, set, test and clear.

8.9.1 SHMEM_LOCK

Releases, locks, and tests a mutual exclusion memory lock.

SYNOPSIS

C/C++:
void shmem_clear_lock(volatile long *lock);

void shmem_set_lock(volatile long *lock);

int shmem_test_lock(volatile long *lock);

FORTRAN:
INTEGER lock, SHMEM_TEST_LOCK

CALL SHMEM_CLEAR_LOCK(lock)

CALL SHMEM_SET_LOCK(lock)

I = SHMEM_TEST_LOCK(lock)

DESCRIPTION

Arguments
IN lock A symmetric data object that is a scalar variable or an array of length 1.

This data object must be set to 0 on all PEs prior to the first use. lock
must be of type long. If you are using Fortran, it must be of default
kind.

API description
The shmem_set_lock routine sets a mutual exclusion lock after waiting for the lock to be freed by any
other PE currently holding the lock. Waiting PEs are assured of getting the lock in a first-come, first-served
manner. The shmem_clear_lock routine releases a lock previously set by shmem_set_lock after ensuring
that all local and remote stores initiated in the critical region are complete. The shmem_test_lock routine
sets a mutual exclusion lock only if it is currently cleared. By using this routine, a PE can avoid blocking
on a set lock. If the lock is currently set, the routine returns without waiting. These routines are appropriate
for protecting a critical region from simultaneous update by multiple PEs.

Return Values
The shmem_test_lock routine returns 0 if the lock was originally cleared and this call was able to set the
lock. A value of 1 is returned if the lock had been set and the call returned without waiting to set the lock.

Notes
The term symmetric data object is defined in Section 3. The lock variable should always be initialized to
zero and accessed only by the OpenSHMEM locking API. Changing the value of the lock variable by other
means without using the OpenSHMEM API, can lead to undefined behavior.

EXAMPLES

The following example uses shmem_lock in a C program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8. OPENSHMEM LIBRARY API 77

#include <stdio.h>
#include <unistd.h>
#include <shmem.h>
long L = 0;

int main(int argc, char **argv)
{

int me, slp;
shmem_init();
me = shmem_my_pe();
slp = 1;
shmem_barrier_all();
if (me == 1)

sleep (3);
shmem_set_lock(&L);
printf("%d: sleeping %d second%s...\n", me, slp, slp == 1 ? "" : "s");
sleep(slp);
printf("%d: sleeping...done\n", me);
shmem_clear_lock(&L);
shmem_barrier_all();
return 0;

}

8.10 Cache Management

All of these routines are deprecated and are provided for backwards compatibility. Implementations must include all
items in this section, and the routines should function properly and may notify the user about deprecation of their use.

8.10.1 SHMEM_CACHE

Controls data cache utilities.

SYNOPSIS

C/C++:
void shmem_clear_cache_inv(void);

void shmem_set_cache_inv(void);

void shmem_clear_cache_line_inv(void *dest);

void shmem_set_cache_line_inv(void *dest);

void shmem_udcflush(void);

void shmem_udcflush_line(void *dest);

FORTRAN:
CALL SHMEM_CLEAR_CACHE_INV

CALL SHMEM_SET_CACHE_INV

CALL SHMEM_SET_CACHE_LINE_INV(dest)

CALL SHMEM_UDCFLUSH

CALL SHMEM_UDCFLUSH_LINE(dest)

DESCRIPTION

Arguments

IN dest A data object that is local to the PE. dest can be of any noncharacter
type. If you are using Fortran, it can be of any kind.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

78 8. OPENSHMEM LIBRARY API

API description
shmem_set_cache_inv enables automatic cache coherency mode.
shmem_set_cache_line_inv enables automatic cache coherency mode for the cache line associated with
the address of dest only.
shmem_clear_cache_inv disables automatic cache coherency mode previously enabled by shmem_set_cache
_inv or shmem_set_cache_line_inv.
shmem_udcflush makes the entire user data cache coherent.
shmem_udcflush_line makes coherent the cache line that corresponds with the address specified by dest.

Return Values
None.

Notes
These routines have been retained for improved backward compatibility with legacy architectures. They
are not required to be supported by implementing them as no-ops and where used, they may have no effect
on cache line states.

EXAMPLES

None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Annex A

Writing OpenSHMEM Programs

Incorporating OpenSHMEM into Programs

In this section, we describe how to write a “Hello World” OpenSHMEM program. To write a “Hello World” Open-
SHMEM program we need to:

• Add the include file shmem.h (for C) or shmem.fh (for Fortran).

• Add the initialization call shmem_init, (line 9).

• Use OpenSHMEM calls to query the the total number of PEs (line 10) and PE id (line 11).

• There is no explicit finalize call; either a return from main() (line 13) or an explicit exit() acts as an implicit
OpenSHMEM finalization.

• In OpenSHMEM the order in which lines appear in the output is not fixed as PEs execute asynchronously in
parallel.

1 #include <stdio.h>
2 #include <shmem.h> /* The shmem header file */
3
4 int
5 main (int argc, char *argv[])
6 {
7 int nprocs, me;
8
9 shmem_init ();

10 nprocs = shmem_n_pes ();
11 me = shmem_my_pe ();
12 printf ("Hello from %d of %d\n", me, nprocs);
13 return 0;
14 }

Listing A.1: Expected Output (4 processors)
1 Hello from 0 of 4
2 Hello from 2 of 4
3 Hello from 3 of 4
4 Hello from 1 of 4

OpenSHMEM also has a Fortran API, so for completeness we will now give the same program written in Fortran,
in listing A:

79

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

80 ANNEX A. WRITING OPENSHMEM PROGRAMS

1 program hello
2
3 include "shmem.fh"
4 integer :: shmem_my_pe, shmem_n_pes
5
6 integer :: npes, me
7
8 call shmem_init ()
9 npes = shmem_n_pes ()

10 me = shmem_my_pe ()
11
12 write (*, 1000) me, npes
13
14 1000 format (’Hello from’, 1X, I4, 1X, ’of’, 1X, I4)
15
16 end program hello

Listing A.2: Expected Output (4 processors)
1 Hello from 0 of 4
2 Hello from 2 of 4
3 Hello from 3 of 4
4 Hello from 1 of 4

The following example shows a more complex OpenSHMEM program that illustrates the use of symmetric data
objects. Note the declaration of the static short dest array and its use as the remote destination in OpenSHMEM short
Put. The use of the static keyword results in the dest array being symmetric on PE 0 and PE 1. Each PE is able to
transfer data to the dest array by simply specifying the local address of the symmetric data object which is to receive
the data. This aids programmability, as the address of the dest need not be exchanged with the active side (PE 0) prior
to the RMA (Remote Memory Access) routine. Conversely, the declaration of the short source array is asymmetric.
Because the Put handles the references to the source array only on the active (local) side, the asymmetric source object
is handled correctly.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

ANNEX A. WRITING OPENSHMEM PROGRAMS 81

1 #include <stdio.h>
2 #include <shmem.h>
3 #define SIZE 16
4 int
5 main(int argc, char* argv[])
6 {
7 short source[SIZE];
8 static short dest[SIZE];
9 int i, npes;

10 shmem_init();
11 npes = shmem_n_pes();
12 if (shmem_my_pe() == 0) {
13 /* initialize array */
14 for(i = 0; i < SIZE; i++)
15 source[i] = i;
16 /* local, not symmetric */
17 /* static makes it symmetric */
18 /* put "size" words into dest on each PE */
19 for(i = 1; i < npes; i++)
20 shmem_short_put(dest, source, SIZE, i);
21 }
22 shmem_barrier_all(); /* sync sender and receiver */
23 if (shmem_my_pe() != 0) {
24 printf("dest on PE %d is \t", shmem_my_pe());
25 for(i = 0; i < SIZE; i++)
26 printf("%hd \t", dest[i]);
27 printf("\n");
28 }
29 shmem_finalize();
30 return 0;
31 }

Listing A.3: Expected Output (4 processors)
1 dest on PE 1 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 dest on PE 2 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 dest on PE 3 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Annex B

Compiling and Running Programs

As of this writing, the OpenSHMEM specification is silent regarding how OpenSHMEM programs are compiled, linked
and run. This section shows some examples of how wrapper programs are utilized in the OpenSHMEM Reference
Implementation to compile and launch programs.

1 Compilation

Programs written in C

The OpenSHMEM Reference Implementation provides a wrapper program named oshcc, to aid in the compilation of
C programs, the wrapper could be called as follows:

oshcc <compiler options> -o myprogram myprogram.c

Where the 〈compiler options〉 are options understood by the underlying C compiler.

Programs written in C++

The OpenSHMEM Reference Implementation provides a wrapper program named oshCC, to aid in the compilation of
C++ programs, the wrapper could be called as follows:

oshCC <compiler options> -o myprogram myprogram.cpp

Where the 〈compiler options〉 are options understood by the underlying C++ compiler called by oshCC.

Programs written in Fortran

The OpenSHMEM Reference Implementation provides a wrapper program named oshfort, to aid in the compilation
of Fortran programs, the wrapper could be called as follows:

oshfort <compiler options> -o myprogram myprogram.f

Where the 〈compiler options〉 are options understood by the underlying Fortran compiler called by oshfort.

2 Running Programs

The OpenSHMEM Reference Implementation provides a wrapper program named oshrun, to launch OpenSHMEM
programs, the wrapper could be called as follows:

oshrun <additional options> -np <#> <program> <program arguments>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

82

ANNEX B. COMPILING AND RUNNING PROGRAMS 83

The program arguments for oshrun are:
〈additional options〉 Options passed to the underlying launcher.
-np 〈#〉 The number of PEs to be used in the execution.
〈program〉 The program executable to be launched.
〈program arguments〉 Flags and other parameters to pass to the program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Annex C

Undefined Behavior in OpenSHMEM

The specification provides guidelines to the expected behavior of various library routines. In cases where routines
are improperly used or the input is not in accordance with the specification, undefined behavior may be observed.
Depending on the implementation there are many interpretations of undefined behavior.

Inappropriate Usage Undefined Behavior
Uninitialized library If OpenSHMEM is not initialized through a call to shmem_init,

subsequent accesses to OpenSHMEM routines have undefined results.
An implementation may choose, for example, to try to continue or
abort immediately upon the first call to an uninitialized routine.

Accessing non-existent PEs If a communications routine accesses a non-existent PE, then the
OpenSHMEM library can choose to handle this situation in an
implementation-defined way. For example, the library may issue an
error message saying that the PE accessed is outside the range of
accessible PEs, or may exit without a warning.

Use of non-symmetric variables Some routines require remotely accessible variables to perform their
function. A Put to a non-symmetric variable can be trapped where
possible and the library can abort the program. Another
implementation may choose to continue either with a warning or
silently.

Non-symmetric variables The symmetric memory management routines are collectives, which
means that all PEs in the program must issue the same shmem_malloc
call with the same size request. Program behavior after a mismatched
shmem_malloc call is undefined.

Use of NULL pointers with
non-zero len specified

In any OpenSHMEM routine that takes a pointer and len describing
the number of elements in that pointer, NULL may not be specified for
the pointer unless the corresponding len is also specified as zero.
Otherwise, the resulting behavior is undefined. The following cases
summarize this behavior:

• len is 0, pointer is NULL: supported.

• len is not 0, pointer is NULL: undefined behavior.

• len is 0, pointer is not NULL: supported.

• len is not 0, pointer is not NULL: supported.

Multiple calls to shmem_init In an OpenSHMEM program where shmem_init has already be called,
any subsequent calls to shmem_init result in undefined behavior.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

84

Annex D

Interoperability with other Programming
Models

1 MPI Interoperability

OpenSHMEM routines can be used in conjunction with MPI routines in the same program. For example, on SGI
systems, programs that use both MPI and OpenSHMEM routines call MPI_Init and MPI_Finalize but omit the call to
the shmem_init routine. OpenSHMEM PE numbers are equal to the MPI rank within the MPI_COMM_WORLD
environment variable. Note that this precludes use of OpenSHMEM routines between processes in different
MPI_COMM_WORLDs. MPI processes started using the MPI_Comm_spawn routine, for example, cannot use Open-
SHMEM routines to communicate with their parent MPI processes.

On SGI systems where MPI jobs use TCP/sockets for inter-host communication, OpenSHMEM routines can be
used to communicate with processes running on the same host. The shmem_pe_accessible routine can be used to
determine if a remote PE is accessible via OpenSHMEM communication from the local PE. When running an MPI
program involving multiple executable files, OpenSHMEM routines can be used to communicate with processes run-
ning from the same or different executable files, provided that the communication is limited to symmetric data objects.
On these systems, static memory such as a Fortran common block or C global variable, is symmetric between pro-
cesses running from the same executable file, but is not symmetric between processes running from different executable
files. Data allocated from the symmetric heap (shmem_malloc or shpalloc) is symmetric across the same or different
executable files. The routine shmem_addr_accessible can be used to determine if a local address is accessible via
OpenSHMEM communication from a remote PE.

Another important feature of these systems is that the shmem_pe_accessible routine returns TRUE only if the
remote PE is a process running from the same executable file as the local PE, indicating that full OpenSHMEM support
(static memory and symmetric heap) is available. When using OpenSHMEM routines within an MPI program, the use
of MPI memory placement environment variables is required when using non-default memory placement options.

85

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Annex E

History of OpenSHMEM

SHMEM has a long history as a parallel programming model, having been used extensively on a number of products
since 1993, including Cray T3D, Cray X1E, the Cray XT3/4, SGI Origin, SGI Altix, clusters based on the Quadrics
interconnect, and to a very limited extent, Infiniband based clusters.

• A SHMEM Timeline

– Cray SHMEM

* SHMEM first introduced by Cray Research Inc. in 1993 for Cray T3D

* Cray is acquired by SGI in 1996

* Cray is acquired by Tera in 2000 (MTA)

* Platforms: Cray T3D, T3E, C90, J90, SV1, SV2, X1, X2, XE, XMT, XT

– SGI SHMEM

* SGI purchases Cray Research Inc. and SHMEM was integrated into SGI’s Message Passing Toolkit
(MPT)

* SGI currently owns the rights to SHMEM and OpenSHMEM

* Platforms: Origin, Altix 4700, Altix XE, ICE, UV

* SGI was purchased by Rackable Systems in 2009

* SGI and Open Source Software Solutions, Inc. (OSSS) signed a SHMEM trademark licensing agree-
ment, in 2010

– Other Implementations

* Quadrics (Vega UK, Ltd.)

* Hewlett Packard

* GPSHMEM

* IBM

* QLogic

* Mellanox

* University of Florida

• OpenSHMEM Implementations

– SGI OpenSHMEM

– University of Houston - OpenSHMEM Reference Implementation

– Mellanox ScalableSHMEM

– Portals-SHMEM

– IBM OpenSHMEM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

86

Annex F

OpenSHMEM Specification and Deprecated
API

For the OpenSHMEM Specification(s), deprecation is the process of identifying API that is supported but no longer
recommended for use by program users. For OpenSHMEM library users, said API must be supported until clearly
indicated as otherwise by the Specification. In this chapter we will record the API that has been deprecated, the
OpenSHMEM Specification that effected the deprecation, and if the feature is supported in the current version of the
specification.

Deprecated API Deprecated Since Currently Supported(?) Replaced By
_my_pe 1.2 Yes shmem_my_pe
_num_pes 1.2 Yes shmem_n_pes
shmalloc 1.2 Yes shmem_malloc
shfree 1.2 Yes shmem_free
shrealloc 1.2 Yes shmem_realloc
shmemalign 1.2 Yes shmem_align
start_pes 1.2 Yes shmem_init
SHMEM_PUT 1.2 Yes SHMEM_PUT8 or SHMEM_PUT64
SHMEM_CACHE 1.3 Yes (none)
SHMEM* constants 1.3 Yes (none)

87

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Annex G

Changes to this Document

1 Version 1.3

This section summarizes the changes from the OpenSHMEM specification Version 1.2 to Version 1.3. Many major
changes to the specification was introduced in Version 1.3. This includes non-blocking RMA operations, generic
interfaces for various OpenSHMEM interfaces, atomic Put and Get operations, and Alltoall interfaces.

The following list describes the specific changes in 1.3:

• Clarified implementation of PEs as threads.

• Added const to every read-only pointer argument.

• Clarified definition of Fence.
See Section 2.

• Clarified implementation of symmetric memory allocation.
See Section 3.

• Restricted atomic operation guarantees to other atomic operations with the same datatype.
See Section 4.2.

• Deprecation of all constants that start with _SHMEM_*.
See Section 6.

• Added a type-generic interface to OpenSHMEM RMA and AMO operations based on C11 Generics.
See Sections 8.3, 8.4 and 8.5.

• New non-blocking variants of remote memory access, SHMEM_PUT_NBI and SHMEM_GET_NBI.
See Sections 8.4.1 and 8.4.2.

• New atomic elemental read and write operations, SHMEM_FETCH and SHMEM_SET.
See Sections 8.5.7 and 8.5.8

• New alltoall data exchange operations, SHMEM_ALLTOALL and SHMEM_ALLTOALLS.
See Sections 8.6.6 and 8.6.7.

• Added volatile to remotely accessible pointer argument in SHMEM_WAIT and SHMEM_LOCK.
See Sections 8.7.1 and 8.9.1.

• Deprecation of SHMEM_CACHE.
See Section 8.10.1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

88

ANNEX G. CHANGES TO THIS DOCUMENT 89

2 Version 1.2

This section summarizes the changes from the OpenSHMEM specification Version 1.1 to Version 1.2. A major change
in this version is that it improves upon the execution model described in 1.1 by introducing an explicit shmem_finalize
library call. This provides a collective mechanism of exiting an OpenSHMEM program and releasing resources used
by the library.

The following list describes the specific changes in 1.2:

• Added specification of pSync initialization for all routines that use it.

• Replaced all placeholder variable names target with dest to avoid confusion with Fortran ‘target’ keyword.

• New Execution Model for exiting/finishing OpenSHMEM programs.
See Section 4.

• New library constants to support API that query version and name information.
See Section 6.

• New API shmem_init to provide mechanism to start an OpenSHMEM program and replace deprecated start_pes.
See Section 8.1.1.

• Deprecation of _my_pe and _num_pes routines.
See Sections 8.1.2 and 8.1.3.

• New API shmem_finalize to provide collective mechanism to cleanly exit an OpenSHMEM program and release
resources.
See Section 8.1.4.

• New API shmem_global_exit to provide mechanism to exit an OpenSHMEM program.
See Section 8.1.5.

• Clarification related to the address of the referenced object in shmem_ptr.
See Section 8.1.8.

• New API to query the version and name information.
See Section 8.1.9 and 8.1.10.

• OpenSHMEM library API normalization. All C symmetric memory management API begins with shmem_.
See Section 8.2.1.

• Notes and clarifications added to shmem_malloc.
See Section 8.2.1.

• Deprecation of Fortran API routine SHMEM_PUT.
See Section 8.3.1.

• Clarification related to shmem_wait.
See Section 8.7.1.

• Undefined behavior for null pointers without zero counts added.
See Annex C

• Addition of new Annex for clearly specifying deprecated API and its support in the existing specification version.
See Annex F.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

90 ANNEX G. CHANGES TO THIS DOCUMENT

3 Version 1.1

This section summarizes the changes from the OpenSHMEM specification Version 1.0 to the Version 1.1. A major
change in this version is that it provides an accurate description of OpenSHMEM interfaces so that they are in agree-
ment with the SGI specification. This version also explains OpenSHMEM ’s programming, memory, and execution
model. The document was thoroughly changed to improve the readability of specification and usability of interfaces.
The code examples were added to demonstrate the usability of API. Additionally, diagrams were added to help under-
stand the subtle semantic differences of various operations.

The following list describes the specific changes in 1.1:

• Clarifications of the completion semantics of memory synchronization interfaces.
See Section 8.8.

• Clarification of the completion semantics of memory load and store operations in context of shmem_barrier_all
and shmem_barrier routines.
See Section 8.6.1 and 8.6.2.

• Clarification of the completion and ordering semantics of shmem_quiet and shmem_fence.
See Section 8.8.2 and 8.8.1.

• Clarifications of the completion semantics of RMA and AMO routines.
See Sections 8.3 and 8.5

• Clarifications of the memory model and the memory alignment requirements for symmetric data objects.
See Section 3.

• Clarification of the execution model and the definition of a PE.
See Section 4

• Clarifications of the semantics of shmem_pe_accessible and shmem_addr_accessible.
See Section 8.1.6 and 8.1.7.

• Added an annex on interoperability with MPI.
See Annex D.

• Added examples to the different interfaces.

• Clarification of the naming conventions for constant in C and Fortran.
See Section 6 and 8.7.1.

• Added API calls: shmem_char_p, shmem_char_g.
See Sections 8.3.2 and 8.3.5.

• Removed API calls: shmem_char_put, shmem_char_get.
See Sections 8.3.1 and 8.3.4.

• The usage of ptrdiff_t, size_t, and int in the interface signature was made consistent with the description.
See Sections 8.6, 8.3.3, and 8.3.6.

• Revised shmem_barrier example.
See Section 8.6.2.

• Clarification of the initial value of pSync work arrays for shmem_barrier.
See Section 8.6.2.

• Clarification of the expected behavior when multiple start_pes calls are encountered has been clarified.
See Section 8.1.11.

• Corrected the definition of atomic increment operation.
See Section 8.5.5.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

ANNEX G. CHANGES TO THIS DOCUMENT 91

• Clarification of the size of the symmetric heap and when it is set.
See Section 8.2.1.

• Clarification of the integer and real sizes for Fortran API.
See Sections 8.5.1, 8.5.2, 8.5.3, 8.5.4, 8.5.5, and 8.5.6.

• Clarification of the expected behavior on program exit.
See Section 4, Execution Model.

• More detailed description for the progress of OpenSHMEM operations provided.
See Section 4.1.

• Clarification of naming convention for non-standard interfaces and their inclusion in shmemx.h.
See Section 5.

• Various fixes to OpenSHMEM code examples across the specification to include appropriate header files.

• Removing requirement that implementations should detect size mismatch and return error information for shmal-
loc and ensuring consistent language.
See Sections 8.2.1 and Annex C.

• Fortran programming fixes for examples.
See Sections 8.6.5 and 8.7.1.

• Clarifications of the reuse pSync and pWork across collectives.
See Sections 8.6, 8.6.3, 8.6.4 and 8.6.5.

• Name changes for UV and ICE for SGI systems.
See Annex E.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	The OpenSHMEM Effort
	Programming Model Overview
	Memory Model
	Execution Model
	Progress of OpenSHMEM Operations
	Atomicity Guarantees

	Language Bindings and Conformance
	Library Constants
	Environment Variables
	OpenSHMEM Library API
	Library Setup, Exit, and Query Routines
	SHMEM_INIT
	SHMEM_MY_PE
	SHMEM_N_PES
	SHMEM_FINALIZE
	SHMEM_GLOBAL_EXIT
	SHMEM_PE_ACCESSIBLE
	SHMEM_ADDR_ACCESSIBLE
	SHMEM_PTR
	SHMEM_INFO_GET_VERSION
	SHMEM_INFO_GET_NAME
	START_PES

	Memory Management Routines
	SHMEM_MALLOC, SHMEM_FREE, SHMEM_REALLOC, SHMEM_ALIGN
	SHPALLOC
	SHPCLMOVE
	SHPDEALLOC

	Remote Memory Access Routines
	SHMEM_PUT
	SHMEM_P
	SHMEM_IPUT
	SHMEM_GET
	SHMEM_G
	SHMEM_IGET

	Non-blocking Remote Memory Access Routines
	SHMEM_PUT_NBI
	SHMEM_GET_NBI

	Atomic Memory Operations
	SHMEM_ADD
	SHMEM_CSWAP
	SHMEM_SWAP
	SHMEM_FINC
	SHMEM_INC
	SHMEM_FADD
	SHMEM_FETCH
	SHMEM_SET

	Collective Routines
	SHMEM_BARRIER_ALL
	SHMEM_BARRIER
	SHMEM_BROADCAST
	SHMEM_COLLECT, SHMEM_FCOLLECT
	SHMEM_REDUCTIONS
	SHMEM_ALLTOALL
	SHMEM_ALLTOALLS

	Point-To-Point Synchronization Routines
	SHMEM_WAIT

	Memory Ordering Routines
	SHMEM_FENCE
	SHMEM_QUIET
	Synchronization and Communication Ordering in OpenSHMEM

	Distributed Locking Routines
	SHMEM_LOCK

	Cache Management
	SHMEM_CACHE

	Writing OpenSHMEM Programs
	Compiling and Running Programs
	Compilation
	Running Programs

	Undefined Behavior in OpenSHMEM
	Interoperability with other Programming Models
	MPI! Interoperability

	History of OpenSHMEM
	OpenSHMEM Specification and Deprecated API
	Changes to this Document
	Version 1.3
	Version 1.2
	Version 1.1

