
UNIVERSITY OF HOUSTON

Documentation on
OpenSHMEM Test Suite

 A comprehensive set of tests for OpenSHMEM Specification 1.0

2

Acknowledgement

This work was supported by the United States Department of Defense & used resources of the
Extreme Scale Systems Center at Oak Ridge National Laboratory.
SHMEM is a trademark of SGI, Inc.

3

Table of Contents
 Page No.
1. Introduction 4
2. Tests
 2.1 Feature Tests 5
 2.2 Performance Tests 9
 2.2.1 Micro Benchmarks
 2.3 Examples
3. Running tests 11
4. Expected Results and their interpretation 11

4

1. Introduction

OpenSHMEM API Specification 1.0 is based on SGI ‘s API. The tests in the OpenSHMEM

test suite cover all SHMEM calls that must be supported by all implementations of

OpenSHMEM 1.0. We divide the tests into feature tests, performance tests and

examples. The feature tests check the completeness of the API supported by an

OpenSHMEM library implementation and the performance tests give latency

information for important OpenSHMEM calls. The examples directory contains C

programs that show the working of one or more OpenSHMEM calls.

5

2. Tests

The tests are divided into feature tests, performance tests, and examples in the main

‘test_suite’ directory.

2.1 Feature Tests

The following lists of tests can be found in the folder ‘feature_tests’ for both C and

Fortran;

i. test_shmem_put_shmalloc , test_shmem_put_globals

This tests
a. elemental put calls
C/C++ only:
shmem_double_p, shmem_float_p, shmem_int_p, shmem_long_p,
shmem_short_p

b. block put calls
C/C++ and Fortran:
shmem_put32, shmem_put64, shmem_put128
C/C++ only:
shmem_double_put, shmem_float_put, shmem_int_put, shmem_real_put

c. strided put calls
C/C++ and Fortran:
shmem_iput32, shmem_iput64, shmem_iput128,
C/C++ only:
shmem_double_iput, shmem_float_iput, shmem_int_iput, shmem_long_iput,
shmem_short_iput
Fortran only:
shmem_complex_iput, shmem_integer_iput, shmem_logical_iput,
shmem_real_iput

d. byte-granularity block put calls
C/C++ and Fortran:
shmem_putmem

Additional information:
Test test_shmem_put_shmalloc uses shmalloc-ed variables that are allocated and
managed by the OpenSHMEM library while the test_shmem_put_globals checks that

6

the same calls work with global variables. Correct output for this test also depends on
a reliable implementation of the shmem_barrier_all() OpenSHMEM call.

ii. test_shmem_get_shmalloc, test_shmem_get_globals

This tests
a. elemental get calls
C/C++ only:
shmem_double_p, shmem_float_p, shmem_int_p, shmem_long_p,
shmem_short_p

b. block get calls
C/C++ and Fortran:
shmem_get32, shmem_get64, shmem_get128
C/C++ only:
shmem_double_get, shmem_float_get, shmem_int_get, shmem_real_get

c. strided get calls
C/C++ and Fortran:
shmem_iget32, shmem_iget64, shmem_iget128,
C/C++ only:
shmem_double_iget, shmem_float_iget, shmem_int_iget, shmem_long_iget,
shmem_short_iget
Fortran only:
shmem_complex_iget, shmem_integer_iget, shmem_logical_iget,
shmem_real_iget

d. byte-granularity block get calls
C/C++ and Fortran:
shmem_getmem

Additional information:
Test test_shmem_get_shmalloc uses shmalloc-ed variables that are allocated and
managed by the OpenSHMEM library while the test_shmem_get_globals checks that
the same calls work with global variables. Correct output for this test also depends on
a reliable implementation of the shmem_barrier_all() OpenSHMEM call.

iii. test_shmem_broadcast

This tests shmem_broadcast32, shmem_broadcast64 calls available for C/C++ and
Fortran.

7

Additional information:
Correct output for this test also depends on a reliable implementation of the
shmem_barrier_all() OpenSHMEM call.

iv. test_shmem_barrier

This tests shmem_barrier, shmem_barrier_all calls available for C/C++ and Fortran.
Additional information:
Correct output for this test also depends on a reliable implementation of the
shmem_int_p() OpenSHMEM call.

v. test_shmem_reductions

This tests;
C/C++ only:
shmem_int_and_to_all, shmem_long_and_to_all, shmem_longlong_and_to_all,
shmem_short_and_to_all, shmem_double_max_to_all, shmem_float_max_to_all,
shmem_int_max_to_all, shmem_long_max_to_all, shmem_longdouble_max_to_all,
shmem_longlong_max_to_all, shmem_short_max_to_all,
shmem_double_min_to_all,
 shmem_float_min_to_all, shmem_int_min_to_all, smem_long_min_to_all,
shmem_longdouble_min_to_all, shmem_longlong_min_to_all,
shmem_short_min_to_all,
 shmem_double_sum_to_all, shmem_float_sum_to_all, shmem_int_sum_to_all,
shmem_long_sum_to_all, shmem_longdouble_sum_to_all,
shmem_longlong_sum_to_all,
shmem_short_sum_to_all, shmem_double_prod_to_all, shmem_float_prod_to_all,
shmem_int_prod_to_all, shmem_long_prod_to_all, shmem_longdouble_prod_to_all,
shmem_longlong_prod_to_all, shmem_short_prod_to_all, shmem_int_or_to_all,
shmem_long_or_to_all, shmem_longlong_or_to_all, shmem_short_or_to_all,
shmem_int_xor_to_all, shmem_long_xor_to_all, shmem_longlong_xor_to_all,
shmem_short_xor_to_all

 Fortran only:
shmem_int4_and_to_all, shmem_int8_and_to_all, shmem_real4_max_to_all,
shmem_real8_max_to_all, shmem_real16_max_to_all, shmem_int4_max_to_all,
shmem_int8_max_to_all, shmem_real4_min_to_all, shmem_real8_min_to_all,
shmem_real16_min_to_all, shmem_int4_min_to_all, shmem_int8_min_to_all,
shmem_real4_sum_to_all, shmem_real8_sum_to_all, shmem_real16_sum_to_all,
shmem_int4_sum_to_all, shmem_int8_sum_to_all, shmem_real4_prod_to_all,
shmem_real8_prod_to_all, shmem_real16_prod_to_all, shmem_int4_prod_to_all,
shmem_int8_prod_to_all, shmem_int4_or_to_all, shmem_int8_or_to_all,
shmem_int4_xor_to_all, shmem_int8_xor_to_all

8

Additional information:
Correct output for this test also depends on a reliable implementation of the
shmem_barrier_all() OpenSHMEM call.

vi. test_shmem_atomic

This tests;
C/C++ only:
shmem_double_swap, shmem_float_swap, shmem_int_cswap, shmem_int_fadd,
shmem_int_finc, shmem_int_swap, shmem_long_cswap, shmem_long_fadd,
shmem_long_finc, shmem_long_swap, shmem_longlong_cswap,
shmem_longlong_fadd, shmem_longlong_finc, shmem_longlong_swap

Fortran only:
shmem_int4_cswap, shmem_int4_fadd, shmem_int4_finc, shmem_int4_swap,
shmem_int8_swap, shmem_real4_swap, shmem_real8_swap, shmem_int8_cswap
shmem_int4_add, shmem_int4_inc
Additional information:
Correct output for this test also depends on a reliable implementation of the
shmem_barrier_all() and shmem_int_put OpenSHMEM calls.

vii. test_shmem_synchronization

This tests;
C/C++ only:
shmem_int_wait, shmem_int_wait_until, shmem_long_wait, shmem_long_wait_until,
shmem_longlong_wait, shmem_longlong_wait_until, shmem_short_wait,
shmem_short_wait_until
Fortran only:
shmem_int4_wait, shmem_int4_wait_until, shmem_int8_wait,
shmem_int8_wait_until
Additional information:
Correct output for this test also depends on a reliable implementation of the
shmem_barrier_all(), shmem_long_put and shmem_long_wait OpenSHMEM calls.

viii. test_shmem_accessible

This tests;
C/C++ and Fortran:
shmem_pe_accessible, shmem_addr_accessible
Additional information:
Correct output for this test also depends on a reliable implementation of the
shmem_barrier_all() OpenSHMEM call.

9

ix. test_shmem_collects

This tests;
C/C++ only:
shmem_collect32, shmem_collect64, shmem_fcollect32, shmem_fcollect64
Fortran only:
shmem_collect4, shmem_collect8, shmem_collect32, shmem_collect64,
shmem_fcollect4, shmem_fcollect8, shmem_fcollect32, shmem_fcollect64
Additional information:
Correct output for this test also depends on a reliable implementation of the
shmem_barrier_all() OpenSHMEM call.

x. test_shmem_lock

This tests;
C/C++ and Fortran:
shmem_clear_lock, shmem_set_lock, shmem_test_lock
Additional information:
Correct output for this test also depends on a reliable implementation of the
shmem_barrier_all() and shmem_quiet OpenSHMEM calls.

2.2 Performance Tests

2.2.1 Micro-benchmarks

The Micro-benchmark directory contains programs to measure latency of data

transfer calls and collective calls in OpenSHMEM.

Performance tests measure the time taken for a OpenSHMEM call by finding the

average over 10000 calls.

i. put_performance

ii. get_performance

iii. broadcast_performance

iv. barrier_performance

v. collects_performance

Additional information:

10

Correct output for this test also depends on a reliable implementation of the
shmem_barrier_all() OpenSHMEM call.

2.3 Examples

These are C programs that test one or more OpenSHMEM calls. These are small and

useful programs intended for beginners to SHMEM programming. Some programs in

this category are described below.

a. hello.c – All PEs are initialized and print a “Hello” to screen

b. cpi.c – PI approximator

c. sping.c – Ping-pong test to check bandwidth utilization

d. shmem_matrix.c - Calculates the product of two matrices A and B, based on block

distribution. This program is adapted from the MPI implementation of matrix

muliplication based on 1D block-column distribution. In each iteration, the PE

calculates the partial result of matrix-matrix multiply. After the multiplication, the PE

sends the current portion of matrix A to its right neighbor and receives the next

portion of matrix A from its left neighbor.

e. shmem_2dheat.c - Application for 2D heat transfer modeling using different

methods. Adapted from the parallel MPI implementation of 2D heat conduction

finite difference over a regular domain using the following methods, jacobi, Gauss-

Siedel and SOR. Reference: URL of the MPI implementation

http://www.cct.lsu.edu/~estrabd/2dheat.php

f. shmem_heat_image.c - Application solving heat conduction task based on row-

based distribution of the matrix. The application distributes the matrix in rows

among PEs and then exchanges the result of computation. After doing all the

transfers the output can be written to a file in image format. Reference: URL of the

original implementation at

http://www.kiam.ru/MVS/documents/k100/examples/progrev_shmem_cpu.cpp

g. shmem_daxpy.c - A simple DAXPY like kernel with computation and communication.

It simulates a typical application which uses one dimensional array for local

computation and does a reduction collective operation of the result.

Reference: http://parallel-for.sourceforge.net/shmem-proc-cpu-scalar.html

http://www.cct.lsu.edu/~estrabd/2dheat.php

11

3. Running Tests

Edit the Makefile or export values, such that they use the appropriate compiler,

(SHMEM_FLAGS), run command (RUNCMD), run options (RUNOPT), command line

options to control execution environment (NPROCOPT), NPROC (this parameter decides

the number of PEs, default value is 2).

To compile use ‘make all’ and to execute use ‘make run’.

4. Expected Results and their interpretation

Example: Feature test for atomic operations

Execute test_shmem_atomics.c

Expected Result:

Test shmem_int_swap: Passed
Test shmem_float_swap: Passed
Test shmem_long_swap: Passed
Test shmem_double_swap: Passed
Test shmem_longlong_swap: Passed
Test shmem_int_cswap: Passed
Test shmem_long_cswap: Passed
Test shmem_longlong_cswap: Passed
Test shmem_int_fadd: Passed
Test shmem_long_fadd: Passed
Test shmem_longlong_fadd: Passed
Test shmem_int_finc: Passed
Test shmem_long_finc: Passed
Test shmem_longlong_finc: Passed

If the test says ‘Passed’ then the routines that are being tested behave in accordance
with OpenSHMEM Specification 1.0 and the result produced (if applicable) is correct.

