
OpenSHMEM Reference Library

Implementation

Tony Curtis <arcurtis@mail.uh.edu>

December 6, 2011

Computer Science Department, University of Houston

1

Contents

1 Sponsorship 3

2 Introduction 3

3 Terminology 3

4 Partitioned Global Address Space 3

5 SHMEM History and OpenSHMEM 4

6 The Reference OpenSHMEM Library 4

7 Implementation Strategy 5

7.1 GASNet . 5
7.1.1 Segment Models . 6

7.2 Initialization . 6
7.3 Incorporating SHMEM into Programs 6
7.4 Communications Substrate . 7
7.5 Servicing Communications . 7
7.6 Memory Management . 7
7.7 Point-to-point routines . 8
7.8 Atomic Operations . 8
7.9 Locks . 8
7.10 Barrier and broadcast . 8
7.11 Collects . 9
7.12 Reductions . 9
7.13 Address and PE Accessibility . 9
7.14 Tracing Facility . 10
7.15 C++ . 10
7.16 Fortran . 10

8 Unde�ned Behavior 10

9 Environment Variables 11

10 Alternate collective algorithms 12

11 Compiling and Running Programs 12

12 Con�guration and Installation 13

13 Future Plans 13

2

1 Sponsorship

Work on the OpenSHMEM project is sponsored by the Oak Ridge National
Laboratory Extreme Scale System Center and the U.S. Department of Defense.

2 Introduction

This document is an overview of the implementation strategy for the initial,
reference version of what will become OpenSMHEM. We will discuss the concept
of a partitioned global address space for completeness.

3 Terminology

A SHMEM program consists of a number of processors executing separate pro-
cesses. A processor is referred to as a �processing element�, or PE. All PEs
run the same program in the SPMD model, although they can discover which
position, or rank, they occupy within the program and diverge in behavior.

The number of PEs participating in the program is set at launch-time (al-
though not all PEs need to do work). PEs are numbered monotonically increas-
ing from 0 up to N − 1, where N is the total number of PEs. PEs are assumed
to be equidistant from each other for communication purposes, no topological
information is currently exposed.

Communication occurs through point-to-point one-sided routines and col-
lective operations. A one-sided operation is a communication in which one PE
transfers data to another PE, but the �other� PE does not participate: the
data transfer does not cause the other PE to be interrupted to acknowledge the
transfer (assuming the hardware underneath SHMEM allows this).

4 Partitioned Global Address Space

Parallel programs running in a distributed environment access both local and
remote data. The model used to construct the program can either expose or
hide this distribution. Exposed models include that of MPI and PVM, in which
explicit messages are required to pass data between processors participating in
a parallel program. Hidden models include those with a Global Address Space
(GAS), in which there appears to be memory accessible from all processors.
This memory may be physically accessible, or may in fact be made available
through I/O operations over network interconnects.

SHMEM provides a symmetric view of memory, in which processors allocate
variables in concert but have their own copies. A processor can then �put�
or �get� data to, or from, other processors by requesting a speci�c variable on
another processor. SHMEM provides for address translation when required to
allow a variable allocated by one processor to be accessed by another, because in
a number of environments it is not guaranteed that address spaces are uniform.

3

http://www.ornl.gov/
http://www.ornl.gov/
http://www.dod.gov/

This allocation-in-concert of separate variables is termed Partitioned Global
Address Space (PGAS).

Clusters that use interconnects with remote direct memory access (rDMA)
are of particular interest to the PGAS community as they provide hardware
o�-load capability to avoid interrupts during one-sided communications.

5 SHMEM History and OpenSHMEM

The SHMEM communications library was originally developed as a proprietary
application interface by Cray for their T3D systems and subsequently the T3E
models. These systems typically consisted of a memory subsystem with a log-
ically shared address space over physically distributed memories, a memory
interconnect network, a set of processing elements (PEs), a set of input-output
gateways, and a host subsystem. The systems were designed to support la-
tency hiding mechanisms such as prefetch queues, remote stores and the Block
Transfer Engine (BLT). The prefetch queues allowed the users to issue multiple
asynchronous single-word reads which could overlap with computation. Remote
stores enabled PEs to directly write to other PE's memory asynchronously, while
the BLT could hide latency while transferring blocks of data e�ciently between
local memory and remote memory locations. The explicit shared memory pro-
gramming method allowed structured communication via shared memory on
Cray MPP systems.

SHMEM was later adapted by SGI for its products based on the Numa-
Link architecture and included in the Message Passing Toolkit (MPT). Other
SHMEM implementations grew out of the SGI and Cray implementations, in-
cluding Quadrics, HP, IBM, gpSHMEM and SiCortex, but diverged from the
original libraries as they developed. These implementations of the SHMEM
API support C, C++, and Fortran programs; however, the di�erences between
SHMEM implementations' semantics and APIs are subtle, resulting in porta-
bility and correctness issues. U.S. Department of Defense funded a collabora-
tion between Oak Ridge National Laboratory and the University of Houston to
develop a speci�cation for a uniform SHMEM API. The OpenSHMEM speci�-
cation was announced to address the divergence of the SHMEM APIs.

6 The Reference OpenSHMEM Library

The overall structure of the reference library is shown below. We use an inter-
mediate library such as GASNet or ARMCI to abstract away from a particular
interconnect/platform, although there is nothing to stop a more direct approach
being used. Internally, the reference implementation of OpenSHMEM provides
private APIs for memory management, the communications layer, tracing/de-
bugging and (eventually) support for adaptivity to choose things like a barrier
algorithm at run-time.

4

7 Implementation Strategy

In this section we talk about how the reference library was written and why
certain implementation strategies were chosen.

7.1 GASNet

GASNet provides access to the symmetric memory areas. A memory manage-
ment library marshals accesses to these areas during allocation and freeing of
symmetric variables in user code, usually through a call like shmalloc() or
shmfree().

When you gasnet_attach() and ask for segment information, each PE
has access to an array of segments, 1 segment per PE. Each PE initializes a
memory pool within its own segment. The set up is handled either by GASNet
internally (�fast�/�large� model) or by OpenSHMEM itself (�everything� model).
The table of segments allows any PE to know the virtual location and size of
the segment belonging to any other PE.

If the platform allows it, GASNet can align all the segments at the same
address, which means that all PEs see the same address for symmetric variables
and there's no address translation.

In the general case though, segments are not aligned (e.g. due to a security
measure like process address space randomization by the OS). However, each
PE can see the addresses of the segments of the other PEs locally, and can
therefore do address translation.

Currently alignment is not checked for, so we're coding to the �worst case
scenario�. That just adds a small overhead if the segments are in fact aligned.
The library should at some point introduce code that di�erentiates between

5

aligned and non-aligned environments with optimized code for the former case
(GASNet provides a macro you can test against).

7.1.1 Segment Models

The library currently has best support for the �everything� model. This model
allows the entire process space to be addressed remotely. Communication with
dynamically allocated data and with global data is equally easy.

For the �fast� and �large� models, only a speci�ed area of the process memory
is exposed for remote access. This means extra support has to be added to
handle communication with global variables, because only the symmetric heap
is exposed by GASNet. Currently this is done via Active Messages.

For the SMP conduit, PSHM support is required to run parallel threaded
programs with OpenSHMEM. This excludes the �everything� model (at least
for the architectures to hand).

7.2 Initialization

In src/updown.c we handle setting up the OpenSHMEM runtime, and even-
tual shutdown. Shutdown is implicit in user code, there is no call to do this in
SGI SHMEM, so we register a handler to be called when main() exits. (Cray
SHMEM has an explicit �nalize call, however, and a pro�ling interface proposal
has suggested introducing this to OpenSHMEM.) The segment exchange is a
target for future optimization: in large programs, the start-up time will become
burdensome due to the large number of address/size communications. Strategies
for avoiding this include lazy initialization and hierarchical or directory-based
lookups.

7.3 Incorporating SHMEM into Programs

For C, the appropriate header �le must be included: <mpp/shmem.h>. The
�rst SHMEM call in any program must be start_pes(npes). start_pes
just ignores its argument (consistent with SGI behavior. SGI indicates �npes�
should be set to zero but we don't enforce that, merely note it). The number of
PEs is taken from the invoking environment. Currently this number is assumed
to be �xed throughout the lifetime of the program, but fault tolerance extensions
could generalize this notion. Below are simple C and Fortran program templates:

6

/* Simple C ‘‘hello world’’ program */

#include <stdio.h>
#include <mpp/shmem.h>

int
main(int argc, char *argv[])
{
int me, npes;

start_pes(0);
me = _my_pe(); /* which PE I am */
npes = _num_pes(); /* how many PEs in program */
printf("Hello from PE %d of %d\n", me, npes);
return 0;

}

! Simple Fortran ‘‘hello world’’ program
program hello
include ’mpp/shmem.fh’
integer :: me, npes

call start_pes(0)
me = my_pe()
npes = num_pes()
print *, ’Hello from PE ’, me, ’ of ’, npes

end program hello

7.4 Communications Substrate

The OpenSHMEM library has been written to sit on top of any communications
library that can provide the required functionality. Initially we have targetted
GASNet. The directory src/comms provides implementations of the internal
API. All subsequent references to GASNet should be read with an eye on the
abstraction process.

7.5 Servicing Communications

GASNet provides this functionality. The mainline code needs to spin on vari-
able waits (e.g. shmem_long_waituntil) to poll GASNet, otherwise progress is
automatic.

7.6 Memory Management

Initially we tried to use the TLSF library (as used in the SiCortex SHMEM
implementation):

http://rtportal.upv.es/rtmalloc/
but this proved to have weird interactions with Open-MPI. Tracking program

progress with valgrind
http://www.valgrind.org/
suggested that system memory calls were being intercepted.
So, following the Chapel lead,

7

http://rtportal.upv.es/rtmalloc/
http://www.valgrind.org/

http://chapel.cray.com/
we now use the �dlmalloc� library
http://g.oswego.edu/dl/html/malloc.html
to manage allocations in the symmetric memory space.

7.7 Point-to-point routines

Point-to-point operations are a thin layer on top of GASNet. The non-blocking
put operations with implicit handles provide a way to subsequently fence and
barrier. However, tracking individual handles explicitly with a hash table keyed
on the address of symmetric variables may give better performance, and this
needs to be looked into.

The Quadrics extensions that add non-blocking calls into the API proper
have already been requested for the OpenSHMEM development. An initial
attempt at these are already in the library and they pass the Cray veri�cation
tests.

7.8 Atomic Operations

Atomic operations include swaps, fetch-and-add and locks (discussed separately
in 7.9). The �rst two are handled via GASNet's Active Messages. Increment
was originally layered on top of add (increment = add 1, after all) but was
rewritten with its own handlers. The payload for increment can be ever so
slightly smaller than for add since there's no need to pass the value to add. In
large applications, even such a small saving could add up (if you'll pardon the
pun).

Earlier versions of the implementation had a single handler lock variable
per operation (one for all adds, one for all increments, etc.). However, we've
now added a hash table to dynamically allocate and manage per-target-address
handler locks. Large-scale atomic operations, like add-scatters across multiple
variables could easily bene�t from this, as the lock granularity then permits
concurrent discrete memory accesses.

7.9 Locks

OpenSHMEM provides routines to claim, release and test global locks. These
can be used for mutual-exclusion regions. Our implementation is from the
Quadrics library, which is a version of the Mellor-Crummy-Scott algorithm (�Al-
gorithms for Scalable Synchronization on Shared-Memory Multiprocessors� by
John M. Mellor-Crummey and Michael L Scott). The locks are layered on top
of OpenSHMEM primitives, so there are no Elan dependencies.

7.10 Barrier and broadcast

The initial version is naive, making the root of the broadcast a bottleneck. This
is partly intentional, to allow Swaroop (PhD student at UH) to explore better

8

http://chapel.cray.com/
http://g.oswego.edu/dl/html/malloc.html

algorithms and work out how to demonstrate and document the improvements.
We would like to collect some locality information inside the library to help
decide communication order inside these algorithms: PEs that di�er in rank
by large amounts are likely to be further away topologically too, so by sending
to more distant PEs �rst, we can stagger the network tra�c and balance the
latencies better. A proper measurement of �distance� is needed here. �hwloc�
provides a per-system distance metric in NUMA terms. A simple extension
could e.g. just multiply the distance by some constant when moving o�-node to
penalize network tra�c.

7.11 Collects

The directories src/fcollect and src/collect implement the collector
routines (concatenating arrays on a set of PEs into a target array on all of those
PEs).

fcollect is pretty easy since all the PEs must contribute the same amount
of data. This means we can just pre-compute where each PE writes to their
targets.

collect is harder because each PE can write di�erent amounts. Thought of
2 ways of handling this:

1. initial exchange of sizes �from the left� so each PE can compute its write
locations; then same as fcollect

2. wavefront: PEs wait for noti�cation from PEs before them in the set (lower
numbered). This passes the o�sets across the set.

I used #2. #1 potentially generates a network storm as all PEs wait to work
out where to write, then all write at once. #2 staggers the o�set noti�cation
with a wave of writes moving up the PE numbers.

7.12 Reductions

Reductions coalesce data from a number of PEs into either a single variable
or array on all participating PEs. The coalescing involves some kind of arith-
metic or logic operation (e.g. sum, product, exclusive-or). Currently probably
naive, using gets. A version with puts that can overlap communication and the
computation of the reduction operation should be more scalable. However, the
code is rather compact and all ops use the same template. A future version of
OpenSHMEM may add user-de�ned reductions, and in fact the framework for
this is already in place: all that is needed is a speci�cation of the SHMEM API.

7.13 Address and PE Accessibility

OpenSHMEM allows us to test whether PEs are currently reachable, and whether
addresses on remote PEs are addressable. GASNet is used to �ping� the remote
PE and then we wait for an �ack� with a con�gurable timeout. Remains to be

9

seen how useful this is, and whether it can be used for future fault tolerance
issues.

7.14 Tracing Facility

This library contains �trace points� with categorized messages. These are listed
in section 9

A high-resolution clock is maintained to timestamp such messages. Numer-
ically sorting the output on the �rst �eld can thus help understand the order in
which events happened.

7.15 C++

The C++ interface is basically the C one. There is one point of contention,
namely complex numbers. The SGI documentation refers only to the use of
C99 �complex� modi�ers, not to C++'s complex<T>. The use of complex
number routines (e.g. reductions) in C++ is thus not clearly speci�ed.

7.16 Fortran

The Fortran interface is very similar to that of C. The names of various routines
are di�erent to accommodate the various type di�erences, e.g. shmem_integer_put()
instead of shmem_int_put().

The biggest di�erence is in the symmetric memory management routines.
These have completely di�erent names and parameters compared to the C in-
terface.

The OpenSHMEM implementation handles Fortran with a very thin wrapper
on top of C. Mostly this involves catching Fortran's pass-by-reference variables
and dereferencing them in the underlying C call.

The main development has been on a CentOS platform with GNU 4.1.2-
redhat. There seem to be some issues with this compilers' handling of cray-
pointers: even the simplest programs (no OpenSHMEM content at all) produce
a segmentation fault. Later versions (e.g. 4.5.0 ++) behave better.

8 Unde�ned Behavior

Many routines are currently speci�ed only in terms of �correct� behavior. What
happens when something goes wrong is not always speci�ed. This section at-
tempts to set out a few of these scenarios

• put to PE out of range: suppose we do a put to �right neighbor� (pe + 1).
The highest-numbered PE will attempt to communicate with a PE that
does not exist.

• library not initialized: virtually all OpenSHMEM routines will have major
problems if the library has not been initialized. Implementations can
handle this situation in di�erent ways.

10

9 Environment Variables

The behavior of the OpenSHMEM library can be controlled via a number of
environment variables. For SGI compatibility reasons, we support the �SMA�
variables and our own new ones:

Variable Function

SMA_VERSION print the library version at start-up
SMA_INFO print helpful text about all these environment variables
SMA_SYMMETRIC_SIZE number of bytes to allocate for symmetric heap
SMA_DEBUG enable debugging messages

SHMEM_LOG_LEVELS: a comma, space, or semi-colon separated list of logging/-
trace facilities to enable debugging messages. The facilities currently
include the case-insensitive names:

Facility Meaning

FATAL something unrecoverable happened, abort
DEBUG used for debugging purposes
INFO something interesting happened
NOTICE important event, but non-fatal (see below)
AUTH when something is attempted but not allowed
INIT set-up and tear-down of the program
MEMORY symmetric memory information
CACHE cache �ushing operations
BARRIER about barrier operations
BROADCAST about broadcast operation
COLLECT about collect and fcollect operation
REDUCE about reduction operations
SYMBOLS to inspect the symbol table information
LOCK related to setting, testing and clearing locks
SERVICE related to the network service thread
FENCE tracing network fence events
QUIET tracing network quiet events

SHMEM_LOG_FILE: a �lename to which to write log messages. All PEs append
to this �le. The default is for all PEs to write to standard error.
Per-PE log �les might be an interesting addition.

SHMEM_SYMMETRIC_HEAP_SIZE: the number of bytes to allocate for the sym-
metric heap area. Can scale units with �K�, �M� etc. modi�ers. The
default is 2G.

SHMEM_BARRIER_ALGORITHM: the version of the barrier to use. The default
is �naive�. Designed to allow people to plug other variants in easily
and test.

11

SHMEM_BARRIER_ALL_ALGORITHM: as for SHMEM_BARRIER_ALGORITHM, but
separating these two allows us to optimize if e.g. hardware has spe-
cial support for global barriers.

SHMEM_PE_ACCESSIBLE_TIMEOUT: the number of seconds to wait for PEs to
reply to accessiblity checks. The default is 1.0 (i.e may be fractional).

10 Alternate collective algorithms

A module sytem coupled with the above environment variables allows for run-
time decisions to be made about which algorithm should be used for di�erent
collective routines. These are installed as dynamic objects and the selected al-
gorithm is then loaded as needed. Each module de�nes a structure that maps
the interface it provides to its routines. The choice of algorithm can also be
steered through an optional con�guration �le (overridden by the environment
variables). The �le is

<installdir>/lib/modules/config

and has a simple

algorithm = implementation

format, e.g.

default = tree
barrier-all = bruck

11 Compiling and Running Programs

The SGI SHMEM is provided as part of the Message-Passing Toolkit (MPT) in
the ProPack suite. Compilation uses a standard C, C++ or Fortran compiler
(e.g. GNU, Intel) and links against the SMA and MPI libraries.

In order to abstract the compilation and launching process for OpenSHMEM
we have provided 4 wrapper programs:

1. oshcc: for compiling and linking C programs.

2. oshCC: for compiling and linking C++ programs.

3. oshfort: for compiling and linking F77/F90 programs.

4. oshrun: to launch programs.

The similarity to the style of wrappers found in many MPI implementations
is obvious and intentional. Currently these wrappers do handle a few situations
(e.g. oshcc/CC and oshfort detect that they shouldn't do linking and stop the
underlying compiler complaining about link options being present, but unused).
The compiler scripts are generated from a common template.

12

http://www.sgi.com/products/software/propack.html

The run wrapper currently detects which GASNet conduit is being used and
sets up the environment accordingly to launch the program. Not sure if this is
the best place to do this check, or if the build process should work this out in
advance to streamline the installed code.

There is no requirement in OpenSHMEM to provide anything like this, it's
merely a convenience.

12 Con�guration and Installation

There is a top-level configure script that is a simpli�ed version of the GNU
autotools. This script will eventually become the GNU setup and will do lots
more feature tests. So the usual procedure applies:

$./configure [--options ...]
$ make
$ make install

13 Future Plans

Ideas for extensions to SHMEM to go into OpenSHMEM need to be requested
and evaluated from the SHMEM user and vendor community. A decision process
will determine which ideas are eventually implemented. The library that this
document refers to is hopefully a good platform for these developments.

A number of extensions have already been proposed, and in fact have been
implemented in other SHMEM libraries. These include (but are not limited to)

• thread-safety: providing thread-safe SHMEM routines that can operate in
threaded environments, e.g. alongside OpenMP;

• non-blocking puts: put routines that return per-communication handles
to the caller. The handles can be tested later for completion (present
in Cray and Quadrics SHMEMs); this extension may require revamping
the way implicit handles are used in GASNet, since we will be generating
calls with explicitly generated handles. Building a handle pool on which
to synchronize later should take care of this.

• locality: exposing information about topology to the library and/or its
API;

• regularized namespace: currently routines are a strange brew of �shmem_�
pre�xes, �start_pes�, �_my_pe� and so on. Providing an API with a
consistent naming scheme would be useful;

• Fortran module, C++ API: provide better language support.

13

	Sponsorship
	Introduction
	Terminology
	Partitioned Global Address Space
	SHMEM History and OpenSHMEM
	The Reference OpenSHMEM Library
	Implementation Strategy
	GASNet
	Segment Models

	Initialization
	Incorporating SHMEM into Programs
	Communications Substrate
	Servicing Communications
	Memory Management
	Point-to-point routines
	Atomic Operations
	Locks
	Barrier and broadcast
	Collects
	Reductions
	Address and PE Accessibility
	Tracing Facility
	C++
	Fortran

	Undefined Behavior
	Environment Variables
	Alternate collective algorithms
	Compiling and Running Programs
	Configuration and Installation
	Future Plans

