
OpenSHMEM

Application Programming Interface

http://www.openshmem.org/

Version 1.0 FINAL

The comment period for Version 1.0 FINAL ends on January 31, 2012

The comment period for Version 1.1 starts on February 1, 2012

Developed by

• High Performance Computing Tools group at the University of Houston
http://www.cs.uh.edu/~hpctools/

• Extreme Scale Systems Center, Oak Ridge National Laboratory
http://www.csm.ornl.gov/essc/

http://www.openshmem.org/
http://www.cs.uh.edu/~hpctools/
http://www.csm.ornl.gov/essc/

Sponsored by

• U.S. Department of Defense
http://www.defense.gov/

• Oak Ridge National Laboratory
http://www.ornl.gov/

Authors and Collaborators

• Barbara Chapman, University of Houston

• Tony Curtis, University of Houston

• Ricardo Mauricio, University of Houston

• Swaroop Pophale, University of Houston

• Amrita Banerjee, University of Houston

• Karl Feind, SGI

• Jeff Kuehn, ORNL

• Stephen Poole, ORNL

• Lauren Smith, DoD

Acknowledgements

The OpenSHMEM development work is supported by the Oak Ridge National Laboratory
Extreme Scale System Center.

The following people (listed alphabetically) have contributed ideas, criticisms and sugges-
tions on the openshmem mailing list and in other fora:

Vikas Aggarwal; Brian W. Barrett; Christian Bell; Max Billingsley III; Mark Debbage; Mike
Dubman; Dick Foster; Hal Finkel; Roger A. Golliver; Jeff Hammond; Alistair Hart; Tsai-yang
Jea; Daniel Kidger; Rishi Khan; David LaFrance-Linden; John Leidel; Alexander Mikheev; Chen
Qi; Duncan Roweth; Sameer Shende; Marc Snir; Lawrence Stewart; Keith D. Underwood;
Brian Wibecan.

Apologies to people who have contributed but who are not acknowledged here: it is not
intentional.

1.0 FINAL 2

http://www.defense.gov/
http://www.ornl.gov/

Contents

Contents

1 Introduction . 4

2 What is SHMEM ? . 5

3 The OpenSHMEM Project . 9

4 Memory Model . 10

5 Execution Model . 11

6 Undefined Behavior . 13

7 Library Routines . 14

8 Library Constants . 92

9 Environment Variables . 93

10 Writing OpenSHMEM Programs . 94

11 Compiling and Running Applications . 95

12 Running Applications . 96

13 Examples . 97

14 C Examples . 98

15 Fortran Examples . 115

16 Glossary . 116

Bibliography . 119

1.0 FINAL 3

1 INTRODUCTION

1 Introduction

This document defines the elements of the OpenSHMEM Application Programming Interface.
The purpose of the OpenSHMEM API is to provide programmers with a standard interface for
writing shared-memory parallel programs using C, C++ and Fortran.

More information about the OpenSHMEM project can be found at:
http://www.openshmem.org/

1.0 FINAL 4

http://www.openshmem.org/

2 WHAT IS SHMEM ?

2 What is SHMEM ?

This section is an introduction to previous work on SHMEM. We begin with a quick overview
of the Partitioned Global Address Space model, which is the basis for SHMEM’s data sharing
strategy.

2.1 Partitioned Global Address Space

Conventional Parallel Programming Models can be broadly classified into 2 types:

Shared-Memory Model: in this model all processors interact with a globally available mem-
ory space.

Distributed-Memory Model: in this model each processor has its own memory to work with
and can only directly access the data that resides in its memory. When a processor
needs data from another processor an explicit function call must be made to commu-
nicate with the target processor.

The current high performance computing architectures prefer a combination of the above
mentioned memory models, which is referred to Partitioned Global Address Space or
PGAS for short. In PGAS, each processing element (PE) has access to its own private local
memory and also to a shared memory space. This programming model enhances perfor-
mance by exposing data/thread locality. PGAS programming languages include Unified
Parallel C (UPC), Co-Array Fortran (CAF), Titanium, X-10 and Chapel.

More information about PGAS can be found at the PGAS Forum website.[4]

2.2 SHMEM

SHMEM stands for SHared MEMory. It is an API that allows the participating processes
(called Processing Elements or PEs) to view a Partitioned Global Address Space. Each PE
is able to see variables with a common name, but each PE has its own local copy of the
variable.

The SHMEM library provides inter-processor communication using data passing and one-
sided communication techniques. SHMEM differs from the Message Passing Interface (MPI),
currently the most widely used communication model, in that the latter generally uses two-
sided communication (MPI now also includes one-sided calls). In two-sided communication,
both sides of the exchange (source and destination) are required to participate actively. The
one-sided communication mechanism decouples data transfer and synchronization, reduc-
ing communication overhead, resulting in faster communication patterns. Figure 1 shows
diagrams for one-sided and two-sided communications.

1.0 FINAL 5

2 WHAT IS SHMEM ?

Fig. 1: Communication Scheme

The following are some of the communication operations available in SHMEM:

1. Data Transfers

(a) One-sided puts : the initiator PE (active side) specifies the local data to be written
to the target PE’s (passive side) memory.

(b) One-sided gets : an explicit fetch operation is used to copy a variable amount of
data from a remote process and store it locally.

Note: By avoiding the need for matching send and receive calls, SHMEM simplifies the
communication process by reducing the number of calls required to have one PE
interact with other PEs.

2. Synchronization Mechanisms

(a) Fence: Ensures ordering of PUT operations to a specific PE.

(b) Quiet: Ensures ordering of PUT operations to all PEs.

(c) Barrier: A collective synchronization routine in which no PE may leave the barrier
prior to all PEs entering the barrier.

3. Collective Communication

(a) Broadcast: Copy a block of data from one PE to one or more target PEs.

1.0 FINAL 6

2 WHAT IS SHMEM ?

(b) Collection: Concatenate elements from the source array to a target array over the
specified PEs.

(c) Reduction: Perform an associative binary operation over the specified PEs.

4. Address Manipulation

(a) Allocating and deallocating memory blocks in the symmetric space.

5. Locks

(a) Implementation of mutual exclusion.

6. Atomic Memory Operations

(a) Swap, Conditional Swap, Add and Increment

7. Data Cache control

(a) Implementation of mechanisms to exploit the capabilities of hardware cache if
available.

Note: More information about OpenSHMEM routines can be found in the Library Routines
section.

2.3 History of SHMEM

Cray SHMEM (MP-SHMEM, LC-SHMEM): Cray first introduced SHMEM in 1993 for its Cray T3D
systems. Cray SHMEM was also used in other models: T3E, PVP and XT series.

SGI SHMEM (SGI-SHMEM): Cray Research merged with Silicon Graphics (SGI) in February
1996. At this point SHMEM was incorporated into SGI’s Message Passing Toolkit (MPT).
The platforms supported were - SGI Irix, Origin and Altix.

Quadrics SHMEM (Q-SHMEM): an optimized API for the Quadrics QsNet interconnect. It in-
cluded SGI extensions and provided non-blocking puts and gets. A joint effort from HCS
Lab & Quadrics incorporated a program profiling interface called PSHMEM that can aid
in the execution analysis of SHMEM programs.

The success of SHMEM’s performance attracted several vendors to provide implementations
(with varying names and features) for their systems. Some of them include:

HP SHMEM: Based on the Quadrics API. It is included in the UPC product kit.

1.0 FINAL 7

2 WHAT IS SHMEM ?

Cyclops-64 SHMEM (C64-SHMEM): this SHMEM API supports the Cyclops-64 architecture.
Most of the core features of Cray SHMEM are available with some additional interfaces
specific to the Cyclops-64 architecture.

IBM SHMEM: An implementation created by IBM intended for internal use only.

TurboSHMEM: This implementation uses IBM’s Low-Level API (LAPI) technology to obtain op-
timized one-sided communication for the put/get operations. This allows applications
written with the SHMEM API to run on IBM platforms with minimal source code changes.

GPSHMEM: This implementation of SHMEM aims at providing full portability of applications.
It is built mostly with Cray T3D components and functionalities and provides MPI and
ARMCI support. This project is no longer maintained.

1.0 FINAL 8

3 THE OPENSHMEM PROJECT

3 The OpenSHMEM Project

3.1 What is OpenSHMEM ?

There is currently a number of SHMEM implementations for different platforms. These ver-
sions have subtle differences from one another, and generally, code written using any one
of these implementations is not directly portable to the others.

OpenSHMEM aims to address this situation by creating a process that builds a new, open
specification to consolidate the various extant SHMEM versions into a widely accepted stan-
dard.

A result of this process will be an initial reference implementation based on the SGI SHMEM
that can serve as a starting point for vendors and library developers. New features and
enhancements can be incorporated by the community as agreed and desired. Addition-
ally, OpenSHMEM aims to produce a portable specification enabling programmers to write
SHMEM code that will run with little effort on as many different platforms as possible.

1.0 FINAL 9

4 MEMORY MODEL

4 Memory Model

The OpenSHMEM specification defines how data is stored in the memory of each PE and how
data objects are made remotely accessible to all other PEs.

Data objects can be stored in a private local memory address or in a remotely accessible
memory address space. Objects in the private address space can only be accessed by the
PE itself; these data objects cannot be accessed by other PEs via OpenSHMEM routines.
Remotely accessible objects, however, can be accessed by remote PEs using OpenSHMEM
routines. Remotely accessible data objects are also known as Symmetric Objects. An object
is symmetric if it has a corresponding object with the same type, size and offset on all other
PEs. Examples of Symmetric Objects are static and global variables in C and C++, which are
often allocated at the same address on all PEs where the program is being executed (e.g. in
the ELF executable format). See Figure 2 for an example of how Symmetric Memory Objects
may be arranged in memory.

OpenSHMEM routines allow the creation of dynamically allocated Symmetric data objects.
These objects are created in a special memory region called the Symmetric Heap, which
is created during execution at locations determined by the implementation, meaning the
Symmetric Heap may be in different memory regions on different PEs. OpenSHMEM has
nothing to say regarding the underlying memory layout; it is up to the implementation to
decide how to handle the Symmetric Heap.

Fig. 2: Example of Symmetric Objects

1.0 FINAL 10

5 EXECUTION MODEL

5 Execution Model

This section describes the Execution Model of an OpenSHMEM application.

OpenSHMEM uses a Single Process Multiple Data (SPMD) approach to express parallelism.
An OpenSHMEM application makes use of multiple processors, referred to as Processing
Elements or PEs, to complete operations in parallel.

OpenSHMEM applications may be launched using a dispatcher program, but it is not re-
quired. This dispatcher program may perform steps needed by the implementation to start
the application on the desired processing elements. The following is an example of using a
dispatcher: oshrun -np 4 myprogram

OpenSHMEM requires initialization before using any of the library routines. To this end,
the program issues a call to the start_pes() routine. start_pes() performs any required
initialization steps, such as setting up the symmetric heap for every PE and creating the
virtual PE numbers. The symmetric heap is one of the memory spaces that is remotely
accessible by all PEs. The symmetric heap is discussed further in the Memory Model section.
The virtual PE numbers are the identifiers used to refer to each of the PEs involved in the
execution. These virtual PE numbers are integers assigned in a monotonically increasing
manner from zero to the total number of PEs minus 1.

Data transfer in OpenSHMEM is possible through several one-sided put (for write) and get
(for read) operations, as well as various collective routines such as broadcasts and reduc-
tions.

Query routines are available to gather information about the execution. OpenSHMEM also
provides synchronization routines to coordinate data transfers and other operations.

It is up to the implementation how to handle the finalization of the OpenSHMEM library
and any other resources initialized by the library: there is currently no explicit call for the
programmer.

1.0 FINAL 11

5 EXECUTION MODEL

5.1 Communication Progress

The OpenSHMEM model assumes that computation and communication are naturally over-
lapped. OpenSHMEM programs are expected to exhibit progression of communication both
with and without OpenSHMEM calls.

Consider a PE that is engaged in a long computation with no OpenSHMEM calls. Other PEs
must be able to communicate (put/get, collective, atomic) with that computationally-bound
PE without that PE issuing any explicit OpenSHMEM calls.

OpenSHMEM communication calls involving that PE must progress regardless of when that
PE next engages in an OpenSHMEM call.

Note to implementers: progress will often be ensured through the use of a dedicated
progress thread in software, or through network hardware that offloads communication han-
dling from processors.

5.2 Atomicity Guarantees

OpenSHMEM contains a number of routines that operate on symmetric data atomically.
These routines guarantee that accesses by OpenSHMEM’s atomic operations will be ex-
clusive, but do not guarantee exclusivity in combination with other routines, either inside
OpenSHMEM’s or outside.

For example: during the execution of a remote integer increment operation on a symmetric
variable “x”, no other OpenSHMEM atomic operation may access “x”. After the increment,
“x” will have increased its value by 1 on the target PE, at which point other atomic operations
may then modify that “x”.

1.0 FINAL 12

6 UNDEFINED BEHAVIOR

6 Undefined Behavior

6.1 Undefined Behavior in OpenSHMEM

The specification provides guidelines to the expected behavior of various library routines. In
cases where routines are improperly used or the input is not in accordance with the specifi-
cation, undefined behavior may be observed. Depending on the implementation there are
many interpretations of undefined behavior.

Inappropriate Usage Undefined Behavior

Uninitialized library If OpenSHMEM is not initialized through a call to
start_pes(), subsequent accesses to OpenSHMEM
routines have undefined results. An implementation
may choose, for example, to try to continue or abort
immediately upon the first call to an uninitialized
routine.

Accessing non-existent PEs If a communications routine accesses a non-existent
PE then the OpenSHMEM library can choose to handle
this situation in an implementation-defined way. For
example, the library may issue an error message
saying that the PE accessed is outside the range of
accessible PEs, or may exit without a warning.

Use of non-symmetric
variables

Some routines require remotely accessible variables
to perform their function. A “put” to a non-symmetric
variable can be trapped where possible and the library
can abort the program. Another implementation may
choose to continue either with a warning or silently.

Non-symmetric Variables The symmetric memory management routines are
collectives, which means that all PEs in the program
must issue the same shmalloc() call with the same
size request. OpenSHMEM implementations should
detect the size mismatch and return error information
to the caller. Implementations may also produce an
error message. Program behavior after a mismatched
shmalloc() call is undefined.

1.0 FINAL 13

7 LIBRARY ROUTINES

7 Library Routines

7.1 Initialization Routines

7.1.1 start_pes

7.1.2 Summary

Initializes OpenSHMEM.

7.1.3 Synopsis

C/C++:

void start_pes(int npes);

Fortran:

INTEGER npes

CALL START_PES(npes)

7.1.4 Parameters

npes Unused. Should be set to 0.

7.1.5 Constraints

• If start_pes() is called multiple times, subsequent calls have no effect.

• An OpenSHMEM application must make a call to start_pes() before being able to call
any other OpenSHMEM routine. Calling another OpenSHMEM library routine before
calling start_pes() results in undefined behavior.

7.1.6 Effect

Initializes the execution environment of the PE. This routine is responsible inter alia for set-
ting up the symmetric heap on the calling PE, and the creation of the virtual PE numbers.
Upon successful return from this routine, the calling PE will be able to communicate with
and transfer data to other PEs.

1.0 FINAL 14

7 LIBRARY ROUTINES

7.1.7 Return Values

None

7.2 Query Routines

The OpenSHMEM query routines provide information about the program execution.

7.3 num_pes

7.3.1 Summary

Returns the number of processing elements (PEs) used to run the application.

7.3.2 Synopsis

C/C++:

int _num_pes(void);

Fortran:

INTEGER I

I = NUM_PES()

7.3.3 Parameters

None.

7.3.4 Constraints

None.

7.3.5 Effect

num_pes() returns the total number of PEs running in an application.

1.0 FINAL 15

7 LIBRARY ROUTINES

7.3.6 Return Values

The total number of PEs running the application. PEs are numbered 0..(n-1).

7.4 my_pe

7.4.1 Summary

Returns the virtual PE number of the calling PE.

7.4.2 Synopsis

C/C++:

int _my_pe(void);

Fortran:

INTEGER I

I = MY_PE()

7.4.3 Parameters

None.

7.4.4 Constraints

None.

7.4.5 Effect

my_pe() returns the virtual PE number of the calling PE. PEs are numbered from 0..(n-1).

7.4.6 Return Values

The virtual PE number of the calling PE.

1.0 FINAL 16

7 LIBRARY ROUTINES

7.5 Accessibility Query Routines

7.6 shmem_pe_accessible

7.6.1 Summary

This routine determines if a remote PE is reachable from the calling PE.

7.6.2 Synopsis

C/C++:

int shmem_pe_accessible(int pe);

Fortran:

LOGICAL LOG, SHMEM_PE_ACCESSIBLE
INTEGER pe

LOG = SHMEM_PE_ACCESSIBLE(pe)

7.6.3 Parameters

pe Virtual PE number of the remote PE.

7.6.4 Constraints

• pe must be a virtual PE number. For more information about how virtual PE numbers
are assigned please refer to the Execution Model section.

7.6.5 Effect

This routine returns a value that indicates whether the calling PE is able to perform Open-
SHMEM communication operations with the remote PE.

7.6.6 Return Values

In C/C++, shmem_pe_accessible() returns 1 if the specified PE is a valid remote PE for
OpenSHMEM functions; otherwise, it returns 0. In Fortran, shmem_pe_accessible() re-
turns .TRUE. if the specified PE is a valid remote PE for OpenSHMEM functions; otherwise,
it returns .FALSE..

1.0 FINAL 17

7 LIBRARY ROUTINES

7.7 shmem_addr_accessible

7.7.1 Summary

This routine indicates if an address is accessible via OpenSHMEM operations from the spec-
ified remote PE.

7.7.2 Synopsis

C/C++:

int shmem_addr_accessible(void *addr, int pe);

Fortran:

LOGICAL LOG, SHMEM_ADDR_ACCESSIBLE
INTEGER pe

LOG = SHMEM_ADDR_ACCESSIBLE(addr, pe)

7.7.3 Parameters

addr The address to the memory block in the local symmetric heap.

pe Virtual PE number of the remote PE.

7.7.4 Constraints

• pe must be a virtual PE number in the active set of PEs. For more information about
how virtual PE numbers are assigned please refer to the Execution Model section.

7.7.5 Effect

shmem_addr_accessible() determines if the remote PE pe is accessible via OpenSHMEM
communication routines and that the address addr is in a symmetric segment with respect
to the remote PE pe.

7.7.6 Return Values

In C/C++, shmem_addr_accessible() returns 1 if the data object at address addr is sym-
metric and can be accessed via OpenSHMEM functions; otherwise, it returns 0. In Fortran,
shmem_addr_accessible() .TRUE. if the data object at address addr is symmetric and
can be accessed via OpenSHMEM functions; otherwise, it returns .FALSE..

1.0 FINAL 18

7 LIBRARY ROUTINES

7.8 Symmetric Heap Routines

The OpenSHMEM Symmetric Heap routines manage memory blocks inside the symmetric
heap. The total size of the symmetric heap is determined at program start.

7.9 shmalloc

7.9.1 Summary

This routine allocates a block of memory in the symmetric heap of the calling PE.

7.9.2 Synopsis

C/C++:

void *shmalloc(size_t size);

7.9.3 Parameters

size Size of the requested memory block, in bytes.

7.9.4 Constraints

• All PEs must call this routine at the same point of the execution path; otherwise, unde-
fined behavior results.

• All PEs must call this routine with the same size value; otherwise, undefined behavior
results.

• The parameter size must be less than or equal to the amount of symmetric heap space
available for the calling PE; otherwise shmalloc returns NULL.

7.9.5 Effect

The shmalloc() routine allocates a block of memory of at least size bytes from the sym-
metric heap of the calling PE, and returns a pointer to the allocated block.

shmalloc() calls shmem_barrier_all() before returning to ensure that all the PEs partici-
pate. This guarantees symmetric allocation, and that the remote memory on all the PEs is
available to the other PEs.

1.0 FINAL 19

7 LIBRARY ROUTINES

7.9.6 Return Values

The shmalloc() routine returns a pointer to the allocated block; otherwise a null pointer is
returned if no block could be allocated.

7.10 shmemalign

7.10.1 Summary

This routine allocates a block from the symmetric heap with a byte alignment specified by
the programmer.

7.10.2 Synopsis

C/C++:

void *shmemalign(size_t alignment, size_t size);

7.10.3 Parameters

alignment Size of the alignment block, in bytes.

size Size for the memory block, in bytes.

7.10.4 Constraints

• Values for parameters alignment and size must be positive integer values.

• alignment is a power of 2; power ≥ 3.

• The parameter size must be less than or equal to the amount of symmetric heap space
available for the calling PE; otherwise shmemalign returns NULL.

7.10.5 Effect

The shmemalign() routine allocates a memory block of size bytes in the symmetric heap,
with an alignment of alignment bytes.

shmemalign() calls shmem_barrier_all() before returning to ensure that all the PEs par-
ticipate. This guarantees symmetric allocation, and that the remote memory on all the PEs
is available to the other PEs.

1.0 FINAL 20

7 LIBRARY ROUTINES

7.10.6 Return Values

This routine returns a pointer to the allocated block of memory; otherwise a null pointer is
returned.

7.11 shrealloc

7.11.1 Summary

This routine expands or reduces the size of the block to which ptr points, depending on the
provided size parameter.

7.11.2 Synopsis

C/C++:

void *shrealloc(void *ptr, size_t size);

7.11.3 Parameters

ptr Pointer to a memory block previously allocated with shmalloc() or shrealloc() to be
reallocated.

size New size for the memory block, in bytes.

7.11.4 Constraints

• All PEs must call this routine at the same point of the execution path; otherwise, unde-
fined behavior results.

• All PEs must call this routine with the same parameters; otherwise different symmetric
heap addresses may be returned to each PE.

• The parameter size must be an integer greater than or equal to zero.

• The parameter size must be lesser than or equal to the amount of symmetric heap
space available for the calling PE; otherwise shrealloc returns NULL.

1.0 FINAL 21

7 LIBRARY ROUTINES

7.11.5 Effect

The shrealloc() routine changes the size of the memory block to which ptr points to, and
returns a pointer to the memory block. The contents of the memory block are preserved
up to the lesser of the new and old sizes. If the new size is larger, the value of the newly
allocated portion of the block is indeterminate. In case shrealloc() is unable to extend the
size of the memory block at its current location, the routine may move the block elsewhere
in the symmetric heap while ensuring that contents of the block are preserved. In case of
relocation, shrealloc() will return a pointer to the new location.

If ptr is null, shrealloc() behaves exactly like shmalloc(). If size is 0 and ptr is not null,
the memory block is deallocated. Otherwise, if ptr does not match a pointer earlier returned
by a symmetric heap function, or if the space has already been deallocated, shrealloc() will
return a null pointer. If the space cannot be allocated, the block to which ptr points to is
unchanged.

shrealloc() calls shmem_barrier_all() before returning to ensure that all the PEs partici-
pate. This guarantees symmetric allocation, and that the remote memory on all the PEs is
available to the other PEs.

7.12 shfree

7.12.1 Summary

Frees a memory block previously allocated in the symmetric heap.

7.12.2 Synopsis

C/C++:

void shfree(void *ptr);

7.12.3 Parameters

ptr Pointer to a memory block previously allocated with shmalloc() or shrealloc() to be
deallocated.

7.12.4 Constraints

None.

1.0 FINAL 22

7 LIBRARY ROUTINES

7.12.5 Effect

This routine causes the block to which ptr points to, to be deallocated; that is, made avail-
able for further allocation.

If ptr is a null pointer, no action occurs; otherwise, if the argument does not match a pointer
earlier returned by a symmetric heap function, or if the space has already been deallocated,
shfree() returns.

shfree() calls shmem_barrier_all() before returning to ensure that all the PEs participate.
This guarantees symmetric deallocation within the heap.

7.12.6 Return Values

None.

7.13 SHPALLOC

7.13.1 Summary

This routine allocates a block of memory in the symmetric heap of the calling PE.

7.13.2 Synopsis

Fortran:

POINTER (addr, A(1))
INTEGER (length, errcode, abort)

CALL SHPALLOC(addr, length, errcode, abort)

7.13.3 Parameters

addr First word address of the allocated block (output variable).

length Number of words of memory requested (input variable). One word is 32 bits.

errcode Error code is 0 if no error was detected; otherwise, it is a negative integer code for
the type of error (output variable).

abort Abort code; nonzero requests abort on error; 0 requests an error code (input variable).

1.0 FINAL 23

7 LIBRARY ROUTINES

7.13.4 Constraints

• All PEs must call this routine at the same point of the execution path; otherwise, unde-
fined behavior results.

• All PEs must call this routine with the same parameters; otherwise different symmetric
heap addresses may be returned to each PE..

• length must be lesser than or equal to the amount of symmetric heap space available
for the calling PE.

7.13.5 Effect

The SHPALLOC() routine allocates a block of memory in the symmetric heap of the calling
PE, and returns the address of the allocated block via the addr parameter.

shpalloc() calls shmem_barrier_all() before returning to ensure that all the PEs partici-
pate. This guarantees symmetric allocation, and that the remote memory on all the PEs is
available to the other PEs.

7.13.6 Return Values

The SHPALLOC() routine returns the address of the allocated memory block via the addr
parameter and a result code via the errcode parameter. The possible values for errcode
are:

0 Operation was successful .

-1 Length is not an integer greater than 0.

-2 No more memory is available from the system (checked if the request cannot be satisfied
from the available blocks on the symmetric heap).

7.14 SHPDEALLC

7.14.1 Summary

Frees a memory block previously allocated in the symmetric heap.

1.0 FINAL 24

7 LIBRARY ROUTINES

7.14.2 Synopsis

Fortran:

POINTER (addr, A(1))
INTEGER errcode, abort

CALL SHPDEALLC(addr, errcode, abort)

7.14.3 Parameters

addr First word address of the block to deallocate (input).

errcode Error code is 0 if no error was detected; otherwise, it is a negative integer code for
the type of error (output).

abort Abort code. Nonzero requests abort on error; 0 requests an error code (input).

7.14.4 Constraints

• All PEs must call this routine at the same point of the execution path; otherwise, unde-
fined behavior results.

• All PEs must call this routine with the same parameters; otherwise different symmetric
heap addresses may be returned to each PE.

• The parameter addr must be the address of a block of memory allocated in the sym-
metric heap.

• To maintain symmetric heap consistency, all processing elements (PEs) in a program
must call SHPDEALLC() with the same value of addr; if any PEs fail to call this routine,
it may result in undefined behavior.

7.14.5 Effect

This routine causes the block at address addr, to be deallocated, that is, made available for
further allocation. If addr is not an address in the symmetric heap, an error code is returned
via the parameter errcode.

shdeallc() calls shmem_barrier_all() before returning to ensure that all the PEs partici-
pate. This guarantees symmetric deallocation.

1.0 FINAL 25

7 LIBRARY ROUTINES

7.14.6 Return Values

This routine returns a result code via the errcode parameter. Possible values for errcode
are:

0 Operation was successful .

-3 Address is outside the bounds of the symmetric heap.

-4 Block is already free.

-5 Address is not at the beginning of the block.

7.15 SHPCLMOVE

7.15.1 Summary

This routine expands or reduces the size of the memory block with address addr, depending
on the provided length parameter.

7.15.2 Synopsis

Fortran:

POINTER (addr, A(1))
INTEGER (length, errcode, abort)

CALL SHPCLMOVE(addr, length, status, abort)

7.15.3 Parameters

addr On entry, first word address of the block to change; on exit, the new address of the
block if it was moved. (input and output)

length Requested new total length in words (input). One word is 32 bits.

status Status code. See Return Values below for possible status codes (output).

abort Abort code. Nonzero requests abort on error; 0 requests an error code (input).

1.0 FINAL 26

7 LIBRARY ROUTINES

7.15.4 Constraints

• All PEs must call this routine at the same point of the execution path; otherwise, unde-
fined behavior results.

• All PEs must call this routine with the same parameters; otherwise different symmetric
heap addresses may be returned to each PE.

• The parameter addr must be the address of a block of memory allocated in the sym-
metric heap.

7.15.5 Effect

The SHPCLMOVE() routine either extends a symmetric heap block if the block is followed
by a large enough free block or copies the contents of the existing block to a larger block and
returns a status code indicating that the block was moved. This function also can reduce
the size of a block if the new length is less than the old length. The function may move the
memory block to a new location, in which case the address of the new location is returned.

shpclmove() calls shmem_barrier_all() before returning to ensure that all the PEs partic-
ipate. This guarantees symmetric allocation, and that the remote memory on all the PEs is
available to the other PEs.

7.15.6 Return Values

The address of the new block passed back via the parameter addr.

Possible codes returned via the status parameter:

0 The memory block was resized at its initial location in the symmetric heap.

1 The memory block was moved to a new location in the symmetric heap.

-1 Length is not an integer greater than 0.

-2 No more memory is available from the system (checked if the block cannot be extended
and the free space list does not include a large enough block).

-3 Address is outside the bounds of the symmetric heap.

-4 Block is already free.

-5 Address is not at the beginning of a block.

1.0 FINAL 27

7 LIBRARY ROUTINES

7.16 Remote Pointer Operations

7.17 shmem_ptr

7.17.1 Summary

Returns a pointer to a data object of a remote PE.

7.17.2 Synopsis

C/C++:

void *shmem_ptr(void *target, int pe);

Fortran:

POINTER (PTR, POINTEE)
INTEGER pe

PTR = SHMEM_PTR(target, pe)

7.17.3 Parameters

target Address of the symmetric data object.

pe The virtual PE number of the remote PE.

7.17.4 Constraints

• The shmem_ptr() function only returns a non-NULL value on systems where ordinary
memory loads and stores are used to implement OpenSHMEM put and get operations.

• target must be the address of a symmetric data object.

• pe must be a virtual PE number. For more information about how virtual PE numbers
are assigned please refer to the Execution Model section.

1.0 FINAL 28

7 LIBRARY ROUTINES

7.17.5 Effect

The shmem_ptr() routine returns an address that can be used to directly reference target
on the remote PE pe. The programmer must be able to assign this address to a pointer and
perform ordinary loads and stores to this remote address.

When a sequence of loads (gets) and stores (puts) to a data object on a remote PE does
not match the access pattern provided in a OpenSHMEM data transfer routine like shmem_
put32() or shmem_real_iget(), the shmem_ptr() function can provide an efficient means
to accomplish the communication.

7.17.6 Return Values

Returns a pointer to the data object on the remote PE or NULL if the remote object cannot
be accessed directly.

7.18 Elemental Put Routines

7.19 shmem_TYPE_p

Summary These routines provide a low latency mechanism to write basic types (short,
int, float, double, long) to symmetric data objects on remote PEs.

Synopsis C/C++:

void shmem_short_p(short *addr, short value, int pe);
void shmem_int_p(int *addr, int value, int pe);
void shmem_long_p(long *addr, long value, int pe);
void shmem_float_p(float *addr, float value, int pe);
void shmem_double_p(double *addr, double value, int pe);
void shmem_longlong_p(long long *addr, long value, int pe);
void shmem_longdouble_p(long double *addr, long value, int pe);

Parameters

addr Address of the symmetric data object where to save the data on the remote pe.

value The value to be transferred to addr on the remote pe.

pe Virtual PE number of the remote PE.

1.0 FINAL 29

7 LIBRARY ROUTINES

Constraints

• addr must be the address of a symmetric data object.

• pe must be a virtual PE number. For more information about how virtual PE numbers
are assigned please refer to the Execution Model section.

Effect The shmem_TYPE_p() routines write value to a symmetric array element or scalar
data object of the remote PE indicated by the parameter pe. These routines start the remote
transfer and may return before the data is delivered to the remote PE.

Return Values None

7.20 Block Data Put Routines

7.21 shmem_put

7.21.1 Summary

These routines copy contiguous data from a local object to an object on the destination PE.

7.21.2 Synopsis

C/C++:

void shmem_char_put(char *target, const char *source, size_t nelems, int
pe);

void shmem_short_put(short *target, const short *source, size_t nelems, int
pe);

void shmem_int_put(int *target, const int *source, size_t nelems, int pe);
void shmem_long_put(long *target, const long *source, size_t nelems, int

pe);
void shmem_float_put(float *target, const float *source, size_t nelems, int

pe);
void shmem_double_put(double *target, const double *source, size_t nelems,

int pe);
void shmem_longlong_put(long long *target, const long long *source, size_t

nelems, int pe);
void shmem_longdouble_put(long double *target, const long double *source,

size_t nelems, int pe);

1.0 FINAL 30

7 LIBRARY ROUTINES

void shmem_put32(void *target, const void *source, size_t nelems, int pe);
void shmem_put64(void *target, const void *source, size_t nelems, int pe);
void shmem_put128(void *target, const void *source, size_t nelems, int pe);
void shmem_putmem(void *target, const void *source, size_t nelems, int pe);

Fortran:

INTEGER nelems, pe

CALL SHMEM_CHARACTER_PUT(target, source, nelems, pe)
CALL SHMEM_COMPLEX_PUT(target, source, nelems, pe)
CALL SHMEM_DOUBLE_PUT(target, source, nelems, pe)
CALL SHMEM_INTEGER_PUT(target, source, nelems, pe)
CALL SHMEM_LOGICAL_PUT(target, source, nelems, pe)
CALL SHMEM_REAL_PUT(target, source, nelems, pe)
CALL SHMEM_PUT(target, source, nelems, pe)
CALL SHMEM_PUT4(target, source, nelems, pe)
CALL SHMEM_PUT8(target, source, nelems, pe)
CALL SHMEM_PUT32(target, source, nelems, pe)
CALL SHMEM_PUT64(target, source, nelems, pe)
CALL SHMEM_PUT128(target, source, nelems, pe)
CALL SHMEM_PUTMEM(target, source, nelems, pe)

7.21.3 Parameters

target Address of the symmetric data object where to save the data on the remote pe.

source Address of the data to be transferred to the remote data object.

nelems The number of elements in the target and source objects.

pe Virtual PE number of the remote PE.

7.21.4 Constraints

• target must be the address of a symmetric data object.

• source must have the same type as target.

• nelems must be of type integer. If you are using Fortran, it must be a constant, vari-
able, or array element of default integer type.

• pe must be a virtual PE number. For more information about how virtual PE numbers
are assigned please refer to the Execution Model section.

1.0 FINAL 31

7 LIBRARY ROUTINES

7.21.5 Effect

These routines transfer nelems elements of the data object at address source on the call-
ing PE, to the data object at address target on the remote PE pe. These routines start the
remote transfer and may return before the data is delivered to the remote PE. The delivery
of data into the data object on the destination PE from different put calls may occur in any
order. Because of this, two successive put operations may deliver data out of order unless a
call to shmem_fence() is introduced between the two calls.

7.21.6 Return Values

None

7.22 Strided Put Routines

7.23 shmem_iput

7.23.1 Summary

These routines copy strided data from the local PE to a strided data object on the destination
PE.

7.23.2 Synopsis

C/C++:

void shmem_short_iput(short *target, const short *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_int_iput(int *target, const int *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_float_iput(float *target, const float *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_long_iput(long *target, const long *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_double_iput(double *target, const double *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_longlong_iput(long long *target, const long long *source,
ptrdiff_t tst, ptrdiff_t sst, size_t nelems, int pe);

void shmem_longdouble_iput(long double *target, const long double *source,
ptrdiff_t tst, ptrdiff_t sst, size_t nelems, int pe);

1.0 FINAL 32

7 LIBRARY ROUTINES

void shmem_iput32(void *target, const void *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_iput64(void *target, const void *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_iput128(void *target, const void *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

Fortran:

INTEGER tst, sst, nelems, pe

CALL SHMEM_COMPLEX_IPUT(target, source, tst, sst, nelems, pe)
CALL SHMEM_DOUBLE_IPUT(target, source, tst, sst, nelems, pe)
CALL SHMEM_INTEGER_IPUT(target, source, tst, sst, nelems, pe)
CALL SHMEM_LOGICAL_IPUT(target, source, tst, sst, nelems, pe)
CALL SHMEM_REAL_IPUT(target, source, tst, sst, nelems, pe)
CALL SHMEM_IPUT4(target, source, tst, sst, nelems, pe)
CALL SHMEM_IPUT8(target, source, tst, sst, nelems, pe)
CALL SHMEM_IPUT32(target, source, tst, sst, nelems, pe)
CALL SHMEM_IPUT64(target, source, tst, sst, nelems, pe)
CALL SHMEM_IPUT128(target, source, tst, sst, nelems, pe)

7.23.3 Parameters

target Address of the symmetric data object where to save the data on the remote pe.

source Address of the data to be transferred to the remote data object.

tst The stride between consecutive elements in the target array. tst must be of type inte-
ger. If you are using Fortran, it must be a default integer value.

sst The stride between consecutive elements in the source array. sst must be of type
integer. If you are using Fortran, it must be a default integer value.

nelems Number of elements in the target and source objects. nelems must be of type
integer. If you are using Fortran, it must be a constant, variable, or array element of
default integer type.

pe Virtual PE number of the remote PE.

7.23.4 Constraints

• target must be the address of a symmetric data object.

1.0 FINAL 33

7 LIBRARY ROUTINES

• source must have the same type as target.

• The strides tst and sst are scaled by the element size of the target and source arrays
respectably. A value of 1 indicates contiguous data. tst and sst must be of type integer.
If you are using Fortran, it must be a default integer value.

• pe must be a virtual PE number. For more information about how virtual PE numbers
are assigned please refer to the Execution Model section.

• Depending on the routine being called, source and target must conform to the follow-
ing typing constraints:

– In shmem_iput32() and shmem_iput4() they can only have a non character
type that has a storage size equal to 32 bits.

– In shmem_iput64() and shmem_iput8() they can only have a non character
type that has a storage size equal to 64 bits.

– In shmem_iput128() they can only have a non character type that has a storage
size equal to 128 bits.

– In shmem_short_iput() they must be of type short.

– In shmem_int_iput() they must be of type int.

– In shmem_float_iput() they must be of type float.

– In shmem_double_iput() they must be of type double.

– In shmem_long_iput() they must be of type long.

– In shmem_longlong_iput() they must be of type long long.

– In shmem_longdouble_iput() they must be of type long double.

– In SHMEM_COMPLEX_IPUT() they must be of type complex of default size.

– In SHMEM_DOUBLE_IPUT() they must be of type double precision.

– In SHMEM_INTEGER_IPUT() they must be of type integer.

– In SHMEM_LOGICAL_IPUT() they must be of type logical.

– In SHMEM_REAL_IPUT() they must be of type real.

7.23.5 Effect

The shmem_iput() routines read the elements of a local array (source) and write them to
a remote array (target) on the PE indicated by pe. These routines return when the data has
been copied out of the source array on the local PE but not necessarily before the data has
been delivered to the remote data object.

1.0 FINAL 34

7 LIBRARY ROUTINES

7.23.6 Return Values

None.

7.24 Elemental Data Get Routines

7.25 shmem_TYPE_g

7.25.1 Summary

These routines provide a low latency mechanism to retrieve basic types (short, int, float,
double, long) from symmetric data objects on remote PEs.

7.25.2 Synopsis

C/C++:

short shmem_short_g(short *addr, int pe);
int shmem_int_g(int *addr, int pe);
long shmem_long_g(long *addr, int pe);
float shmem_float_g(float *addr, int pe);
double shmem_double_g(double *addr, int pe);
long long shmem_longlong_g(long long *addr, int pe);
long double shmem_longdouble_g(long double *addr, int pe);

7.25.3 Parameters

addr Address of the symmetric data object that contains the data to be read.

pe Virtual PE number of the remote PE.

7.25.4 Constraints

• addr must be the address of a symmetric data object.

7.25.5 Effect

Retrieves the value at the symmetric address addr of the remote PE pe.

1.0 FINAL 35

7 LIBRARY ROUTINES

7.25.6 Return Value

The value at the symmetric address addr on PE pe.

7.26 Block Data Get Routines

7.27 shmem_get

7.27.1 Summary

These routines retrieve data from a contiguous data object on a remote PE.

7.27.2 Synopsis

C/C++:

void shmem_char_get(char *target, const char *source, size_t nelems, int
pe);

void shmem_short_get(short *target, const short *source, size_t nelems, int
pe);

void shmem_int_get(int *target, const int *source, size_t nelems, int pe);
void shmem_long_get(long *target, const long *source, size_t nelems, int

pe);
void shmem_float_get(float *target, const float *source, size_t nelems, int

pe);
void shmem_double_get(double *target, const double *source, size_t nelems,

int pe);
void shmem_longlong_get(long long *target, const long long *source, size_t

nelems, int pe);
void shmem_longdouble_get(long double *target, const long double *source,

size_t nelems, int pe);
void shmem_get32(void *target, const void *source, size_t nelems, int pe);
void shmem_get64(void *target, const void *source, size_t nelems, int pe);
void shmem_get128(void *target, const void *source, size_t nelems, int pe);
void shmem_getmem(void *target, const void *source, size_t nelems, int pe);

Fortran:

INTEGER nelems, pe

CALL SHMEM_CHARACTER_GET(target, source, nelems, pe)
CALL SHMEM_COMPLEX_GET(target, source, nelems, pe)

1.0 FINAL 36

7 LIBRARY ROUTINES

CALL SHMEM_DOUBLE_GET(target, source, nelems, pe)
CALL SHMEM_INTEGER_GET(target, source, nelems, pe)
CALL SHMEM_GET4(target, source, nelems, pe)
CALL SHMEM_GET8(target, source, nelems, pe)
CALL SHMEM_GET32(target, source, nelems, pe)
CALL SHMEM_GET64(target, source, nelems, pe)
CALL SHMEM_GET128(target, source, nelems, pe)
CALL SHMEM_GETMEM(target, source, nelems, pe)
CALL SHMEM_LOGICAL_GET(target, source, nelems, pe)
CALL SHMEM_REAL_GET(target, source, nelems, pe)

7.27.3 Parameters

target Address of the local data object in which to save the data.

source Address of the symmetric data object on the remote pe with the data to be retrieved.

nelems Number of elements in the target and source arrays.

pe Identifier of the remote PE.

7.27.4 Constraints

• source must be the address of a symmetric data object.

• In C/C++ nelems must be of type integer. If you are using Fortran, it must be a con-
stant, variable, or array element of default integer type.

7.27.5 Effect

The shmem_get() routines transfer nelems elements of the data object at address source
on the remote PE (pe), to the data object at address target on the local PE. These routines
return after the data has been copied to address target on the local pe.

7.27.6 Return Values

After successful completion, the retrieved data will be available at address target.

1.0 FINAL 37

7 LIBRARY ROUTINES

7.28 Strided Get Routines

7.29 shmem_iget

7.29.1 Summary

The strided get routines copy strided data located on a remote PE to a local strided data
object.

7.29.2 Synopsis

C/C++:

void shmem_iget32(void *target, const void *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_iget64(void *target, const void *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_iget128(void *target, const void *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_short_iget(short *target, const short *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_int_iget(int *target, const int *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_long_iget(long *target, const long *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_double_iget(double *target, const double *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_float_iget(double *target, const double *source, ptrdiff_t tst,
ptrdiff_t sst, size_t nelems, int pe);

void shmem_longlong_iget(long long *target, const long long *source,
ptrdiff_t tst, ptrdiff_t sst, size_t nelems, int pe);

void shmem_longdouble_iget(long double *target, const long double *source,
ptrdiff_t tst, ptrdiff_t sst, size_t nelems, int pe);

Fortran:

INTEGER tst, sst, nelems, pe

CALL SHMEM_IGET4(target, source, tst, sst, nelems, pe)
CALL SHMEM_IGET8(target, source, tst, sst, nelems, pe)
CALL SHMEM_IGET32(target, source, tst, sst, nelems, pe)
CALL SHMEM_IGET64(target, source, tst, sst, nelems, pe)
CALL SHMEM_IGET128(target, source, tst, sst, nelems, pe)

1.0 FINAL 38

7 LIBRARY ROUTINES

CALL SHMEM_COMPLEX_IGET(target, source, tst, sst, nelems, pe)
CALL SHMEM_DOUBLE_IGET(target, source, tst, sst, nelems, pe)
CALL SHMEM_INTEGER_IGET(target, source, tst, sst, nelems, pe)
CALL SHMEM_LOGICAL_IGET(target, source, tst, sst, nelems, pe)
CALL SHMEM_REAL_IGET(target, source, tst, sst, nelems, pe)

7.29.3 Parameters

target Address of the data object in which to save the data on the local pe.

source Address of the symmetric data object on the remote pe with the data to be retrieved.

tst The stride between consecutive elements in the target array.

sst The stride between consecutive elements in the source array.

nelems Number of elements in the target and source objects.

pe Virtual PE number of the remote PE.

7.29.4 Constraints

• source must be the address of a symmetric data object.

• source must have the same type as target.

• In C/C++ tst and sst must be of type integer. If you are using Fortran, they must be a
default integer value.

• The strides tst and sst are scaled by the element size of the target and source arrays
respectably. A value of 1 indicates contiguous data. tst and sst must be of type integer.
If you are using Fortran, it must be a default integer value.

• In C/C++ nelems must be of type integer. If you are using Fortran, it must be a con-
stant, variable, or array element of default integer type.

• Depending on the routine being called, source and target must conform to the follow-
ing typing constraints:

– In shmem_iget32() and shmem_iget4() they can only have a non character type
that has a storage size equal to 32 bits.

– In shmem_iget64() and shmem_iget8() they can only have a non character type
that has a storage size equal to 64 bits.

1.0 FINAL 39

7 LIBRARY ROUTINES

– In shmem_iget128() they can only have a non character type that has a storage
size equal to 128 bits.

– In shmem_short_iget() they must be of type short.

– In shmem_int_iget() they must be of type int.

– In shmem_float_iget() they must be of type float.

– In shmem_double_iget() they must be of type double.

– In shmem_long_iget() they must be of type long.

– In shmem_longlong_iget() they must be of type long long.

– In shmem_longdouble_iget() they must be of type long double.

– In SHMEM_COMPLEX_IGET() they must be of type complex of default size.

– In SHMEM_DOUBLE_IGET() they must be of type double precision.

– In SHMEM_INTEGER_IGET() they must be of type integer.

– In SHMEM_LOGICAL_IGET() they must be of type logical.

– In SHMEM_REAL_IGET() they must be of type real.

7.29.5 Effect

The strided get routines retrieve array data available at address source on remote PE (pe).
The elements of the source array are separated by a stride sst. Once the data is received,
it is stored at the local memory address target, separated by stride tst. The routines return
when the data has been copied into the local target array.

7.29.6 Return Values

Upon return of this routine, the data object at address target will contain the data retrieved
from the remote memory address source.

7.30 Atomic Memory fetch-and-operate Routines

This section describes the OpenSHMEM Atomic fetch-op Routines. These routines allow op-
erations on a symmetric object guaranteeing that another process will not update target
between the time of the fetch and the update.

7.31 shmem_swap

7.31.1 Summary

Performs an atomic swap operation.

1.0 FINAL 40

7 LIBRARY ROUTINES

7.31.2 Synopsis

C/C++:

int shmem_int_swap(int *target, int value, int pe);
long shmem_long_swap(long *target, long value, int pe);
long shmem_swap(long *target, long value, int pe);
long long shmem_longlong_swap(long long *target, long long value, int pe);
float shmem_float_swap(float *target, float value, int pe);
double shmem_double_swap(double *target, double value, int pe);

Fortran:

INTEGER pe

INTEGER SHMEM_SWAP
ires = SHMEM_SWAP(target, value, pe)

INTEGER(KIND=4) SHMEM_INT4_SWAP
ires = SHMEM_INT4_SWAP(target, value, pe)

INTEGER(KIND=8) SHMEM_INT8_SWAP
ires = SHMEM_INT8_SWAP(target, value, pe)

REAL(KIND=4) SHMEM_REAL4_SWAP
res = SHMEM_REAL4_SWAP(target, value, pe)

REAL(KIND=8) SHMEM_REAL8_SWAP
res = SHMEM_REAL8_SWAP(target, value, pe)

7.31.3 Parameters

target Address of the symmetric data object to be updated on the remote pe.

value Value to be atomically written to the remote PE.

pe Virtual PE number of the remote PE.

7.31.4 Constraints

• target must be the address of a symmetric data object.

1.0 FINAL 41

7 LIBRARY ROUTINES

• If using C/C++, the type of target must match that implied in the Synopsis section.
When calling from Fortran, the target data types are as follows:

– For SHMEM_INT4_SWAP() target must be of type Integer, with element size of
4 bytes.

– For SHMEM_INT8_SWAP() target must be of type Integer, with element size of
8 bytes.

– For SHMEM_REAL4_SWAP() target must be of type Real, with element size of 4
bytes.

– For SHMEM_REAL8_SWAP() target must be of type Real, with element size of 8
bytes.

• value must be the same type as target.

• This process must be carried out guaranteeing that it will not be interrupted by any
other operation.

7.31.5 Effect

The atomic swap routines write value to address target on PE pe, and return the previous
contents of target. The operation must be completed without the possibility of another
process updating target between the time of the fetch and the update.

7.31.6 Return Values

Returns the previous value of target.

7.32 shmem_cswap

7.32.1 Summary

The conditional swap routines conditionally update a target data object on an arbitrary pro-
cessing element (PE) and return the prior contents of the data object in one atomic opera-
tion.

7.32.2 Synopsis

C/C++:

1.0 FINAL 42

7 LIBRARY ROUTINES

int shmem_int_cswap(int *target, int cond, int value, int pe);
long shmem_long_cswap(long *target, long cond, long value, int pe);
long shmem_longlong_cswap(longlong *target, longlong cond, longlong value,

int pe);

Fortran:

INTEGER pe

INTEGER(KIND=4) SHMEM_INT4_CSWAP
ires = SHMEM_INT4_CSWAP(target, cond, value, pe)

INTEGER(KIND=8) SHMEM_INT8_CSWAP
ires = SHMEM_INT8_CSWAP(target, cond, value, pe)

7.32.3 Parameters

target Address of the symmetric data object to be updated on the remote pe.

cond cond is compared to the remote target value.

value The value to be atomically written to the remote PE.

pe Virtual PE number of the remote PE.

7.32.4 Constraints

• target must be the address of a symmetric data object.

• If using C/C++, the type of target must match that implied in the Synopsis section.
When calling from Fortran, the target data types are as follows:

– For SHMEM_INT4_CSWAP() target must be of type Integer, with element size of
4 bytes.

– For SHMEM_INT8_CSWAP() target must be of type Integer, with element size of
8 bytes.

• value and cond must be the same type as target.

• This process must be carried out guaranteeing that it will not be interrupted by any
other operation.

1.0 FINAL 43

7 LIBRARY ROUTINES

7.32.5 Effect

The conditional swap routines write value to address target on PE pe, and return the pre-
vious contents of target. The replacement must occur only if cond is equal to target;
otherwise target is left unchanged. In either case, the routine must return the initial value
of target. The operation must be completed without the possibility of another process up-
dating target between the time of the fetch and the update.

7.32.6 Return Values

Returns the initial value of target.

7.33 shmem_fadd

7.33.1 Summary

These routines perform an atomic fetch-and-add operation.

7.33.2 Synopsis

C/C++:

int shmem_int_fadd(int *target, int value, int pe);
long shmem_long_fadd(long *target, long value, int pe);
long long shmem_longlong_fadd(long long *target, long long value, int pe);

Fortran:

INTEGER pe

INTEGER(KIND=4) SHMEM_INT4_FADD
ires = SHMEM_INT4_FADD(target, value, pe)

INTEGER(KIND=8) SHMEM_INT8_FADD
ires = SHMEM_INT8_FADD(target, value, pe)

7.33.3 Parameters

target Address of the symmetric data object where to save the data on the remote pe.

value The value to be atomically added to the value at address target.

pe Virtual PE number of the remote PE.

1.0 FINAL 44

7 LIBRARY ROUTINES

7.33.4 Constraints

• target must be the address of a symmetric data object.

• If using C/C++, the type of target must match that implied in the Synopsis section.
When calling from Fortran, the target data types are as follows:

– For SHMEM_INT4_FADD() target must be of type Integer, with element size of 4
bytes.

– For SHMEM_INT8_FADD() target must be of type Integer, with element size of 8
bytes.

• value must be the same type as target.

• This process must be carried out guaranteeing that it will not be interrupted by any
other operation.

7.33.5 Effect

The fetch and add routines retrieve the value at address target on PE pe, and update
target with the result of adding value to the retrieved value. The operation must be com-
pleted without the possibility of another process updating target between the time of the
fetch and the update.

7.33.6 Return Values

Returns the initial value of target.

7.34 shmem_finc

7.34.1 Summary

These routines perform a fetch-and-increment operation.

7.34.2 Synopsis

C/C++:

int shmem_int_finc(int *target, int pe);
long shmem_long_finc(long *target, int pe);
long long shmem_longlong_finc(long long *target, int pe);

1.0 FINAL 45

7 LIBRARY ROUTINES

Fortran:

INTEGER pe

INTEGER(KIND=4) SHMEM_INT4_FINC
ires = SHMEM_INT4_FINC(target4, pe)

INTEGER(KIND=8) SHMEM_INT8_FINC
ires = SHMEM_INT8_FINC(target8, pe)

7.34.3 Parameters

target Address of the symmetric data object where to save the data on the remote pe.

pe Virtual PE number of the remote PE.

7.34.4 Constraints

• target must be the address of a symmetric data object.

• If using C/C++, the type of target must match that implied in the Synopsis section.
When calling from Fortran, the target data types are as follows:

– For SHMEM_INT4_FINC() target must be of type Integer, with element size of 4
bytes.

– For SHMEM_INT8_FINC() target must be of type Integer, with element size of 8
bytes.

• This process must be carried out guaranteeing that it will not be interrupted by any
other operation.

7.34.5 Effect

The fetch and increment routines retrieve the value at address target on PE pe, and update
target with the result of incrementing the retrieved value by one. The operation must be
completed without the possibility of another process updating target between the time of
the fetch and the update.

7.34.6 Return Values

Returns the initial value of target.

1.0 FINAL 46

7 LIBRARY ROUTINES

7.35 Atomic Memory Operation Routines

7.36 shmem_add

7.36.1 Summary

These routines perform an atomic add operation.

7.36.2 Synopsis

C/C++:

void shmem_int_add(int *target, int value, int pe);
void shmem_long_add(long *target, long value, int pe);
void shmem_longlong_add(long long *target, long long value, int pe);

Fortran:

INTEGER pe

SHMEM_INT4_ADD(target, value, pe)
SHMEM_INT8_ADD(target, value, pe)

7.36.3 Parameters

target Address of the symmetric data object where to save the data on the remote pe.

value The value to be atomically added to target.

pe An integer that indicates the PE number upon which target is to be updated. If you are
using Fortran, it must be a default integer value.

7.36.4 Constraints

• target must be the address of a symmetric data object.

• If using C/C++, the type of var must match that implied in the Synopsis section. When
calling from Fortran, the data type of var must be as follows:

– For SHMEM_INT4_ADD(), var must be of type Integer, with element size of 4
bytes.

1.0 FINAL 47

7 LIBRARY ROUTINES

– For SHMEM_INT8_ADD(), var must be of type Integer, with element size of 8
bytes.

• value must be the same type as target.

• This process must be carried out guaranteeing that it will not be interrupted by any
other operation.

7.36.5 Effect

The atomic add routines add value to the data at address target on PE pe. The operation
must be completed without the possibility of another process updating target between the
time of the fetch and the update.

7.36.6 Return Values

None.

7.37 shmem_inc

7.37.1 Summary

These routines perform an atomic increment operation on a remote data object.

7.37.2 Synopsis

C/C++:

void shmem_int_inc(int *target, int pe);
void shmem_long_inc(long *target, int pe);
void shmem_longlong_inc(long long *target, int pe);

Fortran:

INTEGER pe

INTEGER(KIND=4) target4
CALL SHMEM_INT4_INC(target4, pe)

INTEGER(KIND=8) target8
CALL SHMEM_INT8_INC(target8, pe)

1.0 FINAL 48

7 LIBRARY ROUTINES

7.37.3 Parameters

target Address of the symmetric data object where to save the data on the remote pe.

pe Virtual PE number of the remote PE.

7.37.4 Constraints

• target must be the address of a symmetric data object.

• If using C/C++, the type of target must match that implied in the Synopsis section.
When calling from Fortran, the target data types are as follows:

– For SHMEM_INT4_FINC() target must be of type Integer, with element size of 4
bytes.

– For SHMEM_INT8_FINC() target must be of type Integer, with element size of 8
bytes.

• This process must be carried out guaranteeing that it will not be interrupted by any
other operation.

7.37.5 Effect

The atomic increment routines replace the value of target with its value incremented by
one. The operation must be completed without the possibility of another process updating
target between the time of the fetch and the update.

7.37.6 Return Values

None.

7.38 Point-to-Point Synchronization Routines

The point-to-point synchronization routines force the calling PE to halt execution until a
symmetric data object is changed by a remote write or atomic swap issued by another PE.

7.39 shmem_wait

7.39.1 Summary

These routines force the calling PE to wait until var is no longer equal to value.

1.0 FINAL 49

7 LIBRARY ROUTINES

7.39.2 Synopsis

C/C++:

void shmem_short_wait(short *var, short value);
void shmem_int_wait(int *var, int value);
void shmem_long_wait(long *var, long value);
void shmem_longlong_wait(long long *var, long long value);
void shmem_wait(long *ivar, long value);

Fortran:

CALL SHMEM_INT4_WAIT(var, value)
CALL SHMEM_INT8_WAIT(var, value)
CALL SHMEM_WAIT(var, value)

7.39.3 Parameters

var The symmetric data object to be monitored on the calling PE.

value Value to be compared against the value at address var.

7.39.4 Constraints

• var must be the address of a symmetric data object.

• If using C/C++, the type of var must match that implied in the Synopsis section. When
calling from Fortran, the data type of var must be as follows:

– For SHMEM_INT4_WAIT(), var must be of type Integer, with element size of 4
bytes.

– For SHMEM_INT8_WAIT(), var must be of type Integer, with element size of 8
bytes.

• value must be the same type as var.

7.39.5 Effect

A call to any shmem_wait() routine does not return until some other processor makes the
value at address var not equal to value.

1.0 FINAL 50

7 LIBRARY ROUTINES

7.39.6 Return Values

None.

7.40 shmem_wait_until

7.40.1 Summary

These routines force the calling PE to wait until the condition indicated by cond and value
is satisfied.

7.40.2 Synopsis

C/C++:

void shmem_short_wait_until(short *var, int cmp, short value);
void shmem_int_wait_until(int *var, int cmp, int value);
void shmem_long_wait_until(long *var, int cmp, long value);
void shmem_longlong_wait_until(long long *var, int cmp, long long value);
void shmem_wait_until(long *ivar, int cmp, long value);

Fortran:

INTEGER cmp

CALL SHMEM_INT4_WAIT_UNTIL(var, cmp, value)
CALL SHMEM_INT8_WAIT_UNTIL(var, cmp, value)
CALL SHMEM_WAIT_UNTIL(var, cmp, value)

7.40.3 Parameters

var The symmetric data object to be monitored on the calling PE.

cmp Indicates how to compare value at address var and value. The following are the
allowed compare operations:

SHMEM_CMP_EQ Equal

SHMEM_CMP_NE Not equal

SHMEM_CMP_GT Greater than

SHMEM_CMP_LE Less than or equal to

1.0 FINAL 51

7 LIBRARY ROUTINES

SHMEM_CMP_LT Less than

SHMEM_CMP_GE Greater than or equal to

value Value to be compared against the value at address var.

7.40.4 Constraints

• var must be the address of a symmetric data object.

• If using C/C++, the type of var must match that implied in the Synopsis section. When
calling from Fortran, the data type of var must be as follows:

– For SHMEM_INT4_WAIT_UNTIL(), var must be of type Integer, with element size
of 4 bytes.

– For SHMEM_INT8_WAIT_UNTIL(), var must be of type Integer, with element size
of 8 bytes.

• value must be the same type as var.

• If using C/C++ it must be of integer type. If you are using Fortran, cmp must be of
default kind.

7.40.5 Effect

A call to any shmem_wait_until() routine does not return until some other processor changes
the value at address var to satisfy the condition implied by cmp and value.

7.40.6 Return Values

None.

7.41 Barrier Synchronization Routines

7.42 shmem_barrier_all

7.42.1 Summary

Suspends the execution of the calling PE until all other PEs issue a call to this particular
shmem_barrier_all() statement.

1.0 FINAL 52

7 LIBRARY ROUTINES

7.42.2 Synopsis

C/C++:

void shmem_barrier_all(void);

Fortran:

CALL SHMEM_BARRIER_ALL()

7.42.3 Parameters

None.

7.42.4 Constraints

• All PEs must call this routine at the same point of the execution.

7.42.5 Effect

The shmem_barrier_all() routine does not return until all other PEs have entered this rou-
tine at the same point of the execution path.

Prior to synchronizing with other PEs, shmem_barrier_all() ensures completion of all previ-
ously issued local memory stores and remote memory updates issued via SHMEM functions
such as shmem_put32(3).

7.42.6 Return Values

None.

7.43 shmem_barrier

7.43.1 Summary

Performs a barrier operation on a subset of processing elements (PEs).

1.0 FINAL 53

7 LIBRARY ROUTINES

7.43.2 Synopsis

C/C++:

void shmem_barrier(int PE_start, int logPE_stride, int PE_size, long

*pSync);

Fortran:

INTEGER PE_start, logPE_stride, PE_size
INTEGER pSync(SHMEM_BARRIER_SYNC_SIZE)

CALL SHMEM_BARRIER(PE_start, logPE_stride, PE_size, pSync)

7.43.3 Parameters

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE numbers in the
active set.

PE_size The number of PEs in the active set.

pSync A symmetric work array.

7.43.4 Constraints

• If using C/C++, PE_start must be of type integer. If you are using Fortran, it must be
a default integer value. Its value must be greater than or equal to zero.

• If using C/C++, logPE_stride must be of type integer. If you are using Fortran, it must
be a default integer value.

• If using C/C++, PE_size must be of type integer. If you are using Fortran, it must be a
default integer value. Its value must be less than or equal to the total number of PEs
minus one.

• In C/C++, pSync must be type integer and of size _SHMEM_BARRIER_SYNC_SIZE.
In Fortran, pSync must be of type integer and size SHMEM_BARRIER_SYNC_SIZE.
If you are using Fortran, it must be a default integer type. Every element of this ar-
ray must be initialized to _SHMEM_SYNC_VALUE SHMEM_SYNC_VALUE (in Fortran)
before any of the PEs in the active set enter shmem_barrier the first time.

1.0 FINAL 54

7 LIBRARY ROUTINES

7.43.5 Effect

The shmem_barrier() routine does not return until the subset of PEs specified by PE_start,
logPE_stride and PE_size, have entered this routine at the same point of the execution
path.

7.43.6 Return Values

None.

7.44 shmem_fence

7.44.1 Summary

Assures ordering of delivery of puts.

7.44.2 Synopsis

C/C++:

void shmem_fence(void);

Fortran:

CALL SHMEM_FENCE

7.44.3 Parameters

None.

7.44.4 Constraints

None.

7.44.5 Effect

The shmem_fence() routine ensures ordering of remote put operations. This routine guar-
antees that all put operations issued to a particular remote processing element (PE) prior
to the call to shmem_fence() are delivered before any subsequent put operations to the
same PE which follow the call to shmem_fence().

1.0 FINAL 55

7 LIBRARY ROUTINES

7.44.6 Return Values

None.

7.45 shmem_quiet

7.45.1 Summary

This routine waits for completion of all outstanding remote writes issued by a processing
element (PE).

7.45.2 Synopsis

C/C++:

void shmem_quiet(void);

Fortran:

CALL SHMEM_QUIET

7.45.3 Parameters

None.

7.45.4 Constraints

None.

7.45.5 Effect

The shmem_quiet() routine ensures ordering of remote put operations. All put operations
issued to any processing element (PE) prior to the call to shmem_quiet() are guaranteed
to be visible to all other PEs no later than any subsequent memory load or store, remote put
or get, or synchronization operations that follow the call to shmem_quiet().

7.45.6 Return Values

None.

1.0 FINAL 56

7 LIBRARY ROUTINES

7.46 Reduction Routines

The shared memory (SHMEM) reduction routines perform an associative binary operation
across symmetric arrays on multiple virtual PEs. See Figure 3 for a generalized diagram of
reduction operations.

Fig. 3: General diagram of reduction operations

7.47 shmem_and

7.47.1 Summary

Performs a bitwise AND operation on symmetric arrays over the active set of PEs.

7.47.2 Synopsis

C/C++:

void shmem_short_and_to_all(short *target, short *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_int_and_to_all(int *target, int *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, int *pWrk, long *pSync);

1.0 FINAL 57

7 LIBRARY ROUTINES

void shmem_long_and_to_all(long *target, long *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longlong_and_to_all(long long *target, long long *source, int
nreduce, int PE_start, int logPE_stride, int PE_size, long long *pWrk,
long *pSync);

Fortran:

INTEGER pSync(SHMEM_REDUCE_SYNC_SIZE)
INTEGER nreduce, PE_start, logPE_stride, PE_size

CALL SHMEM_INT4_AND_TO_ALL(target, source, nreduce, PE_start, logPE_stride,
PE_size, pWrk, pSync)

CALL SHMEM_INT8_AND_TO_ALL(target, source, nreduce, PE_start, logPE_stride,
PE_size, pWrk, pSync)

7.47.3 Parameters

target Address of the symmetric data object where to store the results of the reduction
operation.

source Address of the symmetric data object that contains the elements for each separate
reduction operation.

nreduce The number of elements in the target and source arrays.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE numbers in the
active set.

PE_size The number of PEs in the active set.

pWrk A symmetric work array.

pSync A symmetric work array.

7.47.4 Constraints

• target and source must be the addresses of symmetric data objects.

• The target array on all PEs in the active set must be ready to accept the results of the
reduction.

1.0 FINAL 58

7 LIBRARY ROUTINES

• If using C/C++, the type of target must match that implied in the Synopsis section.
When calling from Fortran, the data type of target must be as follows:

– For SHMEM_INT4_AND_TO_ALL(), var must be of type Integer, with element size
of 4 bytes.

– For SHMEM_INT8_AND_TO_ALL(), var must be of type Integer, with element size
of 8 bytes.

• source must be the same type as target.

• source and target may be the same array, but they must not be overlapping arrays.

• If using C/C++, nreduce must be of type integer. If you are using Fortran, it must be
a default integer value.

• If using C/C++, PE_start must be of type integer. If you are using Fortran, it must be
a default integer value. Its value must be greater than or equal to zero.

• If using C/C++, logPE_stride must be of type integer. If you are using Fortran, it must
be a default integer value.

• If using C/C++, PE_size must be of type integer. If you are using Fortran, it must be a
default integer value. Its value must be less than or equal to the total number of PEs
minus one.

• The pWrk argument must have the same data type as target. In C/C++, this con-
tains max(nreduce/2 + 1, _SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements. In
Fortran, this contains max(nreduce/2 + 1, SHMEM_REDUCE_MIN_WRKDATA_SIZE)
elements.

• In C/C++, pSync must be of type long and size _SHMEM_REDUCE_SYNC_SIZE. In
Fortran, pSync must be of type integer and size SHMEM_REDUCE_SYNC_SIZE. If you
are using Fortran, it must be a default integer value. Every element of this array must
be initialized with the value _SHMEM_SYNC_VALUE (in C/C++) or SHMEM_SYNC_
VALUE (in Fortran) before any of the PEs in the active set enter the reduction routine.

• The pWrk and pSync arrays on all PEs in the active set must not be in use from a prior
call to a collective OpenSHMEM routine.

• This routine must be called by all the PEs in the active set at the same point of the
execution path; otherwise undefined behavior results.

1.0 FINAL 59

7 LIBRARY ROUTINES

7.47.5 Effect

This routine returns the result of performing a bitwise AND operation on the source data
object of every PE in the active set. The active set of PEs is defined by the triple PE_start,
logPE_stride and PE_size.

7.47.6 Return Values

Upon completion, the target array will be updated with the result of the bitwise AND oper-
ation and the elements of the pSync array will be restored to their initial values.

7.48 shmem_or

7.48.1 Summary

Performs a bitwise OR operation on symmetric arrays over the active set of PEs.

7.48.2 Synopsis

C/C++:

void shmem_short_or_to_all(short *target, short *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_int_or_to_all(int *target, int *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_or_to_all(long *target, long *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longlong_or_to_all(long long *target, long long *source, int
nreduce, int PE_start, int logPE_stride, int PE_size, long long *pWrk,
long *pSync);

Fortran:

INTEGER pSync(SHMEM_REDUCE_SYNC_SIZE)
INTEGER nreduce, PE_start, logPE_stride, PE_size

CALL SHMEM_INT4_OR_TO_ALL(target, source, nreduce, PE_start, logPE_stride,
PE_size, pWrk, pSync)

CALL SHMEM_INT8_OR_TO_ALL(target, source, nreduce, PE_start, logPE_stride,
PE_size, pWrk, pSync)

1.0 FINAL 60

7 LIBRARY ROUTINES

7.48.3 Parameters

target Address of the symmetric data object where to store the results of the reduction
operation.

source Address of the symmetric data object that contains the elements for each separate
reduction operation.

nreduce The number of elements in the target and source arrays.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE numbers in the
active set.

PE_size The number of PEs in the active set.

pWrk A symmetric work array.

pSync A symmetric work array.

7.48.4 Constraints

• The target array on all PEs in the active set must be ready to accept the results of the
reduction.

• target and source must be the addresses of symmetric data objects.

• If using C/C++, the type of target must match that implied in the Synopsis section.
When calling from Fortran, the data type of target must be as follows:

– For SHMEM_INT4_OR_TO_ALL(), target must be of type Integer, with element
size of 4 bytes.

– For SHMEM_INT8_OR_TO_ALL(), target must be of type Integer, with element
size of 8 bytes.

• source must be the same type as target.

• source and target may be the same array, but they must not be overlapping arrays.

• If using C/C++, nreduce must be of type integer. If you are using Fortran, it must be
a default integer value.

• If using C/C++, PE_start must be of type integer. If you are using Fortran, it must be
a default integer value. Its value must be greater than or equal to zero.

1.0 FINAL 61

7 LIBRARY ROUTINES

• If using C/C++, logPE_stride must be of type integer. If you are using Fortran, it must
be a default integer value.

• If using C/C++, PE_size must be of type integer. If you are using Fortran, it must be a
default integer value. Its value must be less than or equal to the total number of PEs
minus one.

• The pWrk argument must have the same data type as target. In C/C++, this con-
tains max(nreduce/2 + 1, _SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements. In
Fortran, this contains max(nreduce/2 + 1, SHMEM_REDUCE_MIN_WRKDATA_SIZE)
elements.

• In C/C++, pSync must be of type long and size _SHMEM_REDUCE_SYNC_SIZE. In
Fortran, pSync must be of type integer and size SHMEM_REDUCE_SYNC_SIZE. If you
are using Fortran, it must be a default integer value. Every element of this array must
be initialized with the value _SHMEM_SYNC_VALUE (in C/C++) or SHMEM_SYNC_
VALUE (in Fortran) before any of the PEs in the active set enter the reduction routine.

• The pWrk and pSync arrays on all PEs in the active set must not be in use from a prior
call to a collective OpenSHMEM routine.

• This routine must be called by all the PEs in the active set at the same point of the
execution path; otherwise undefined behavior results.

7.48.5 Effect

This routine returns the result of performing a bitwise OR operation on the source data
object of every PE in the active set. The active set of PEs is defined by the triple PE_start,
logPE_stride and PE_size.

7.48.6 Return Values

Upon completion, the target array will be updated with the result of the bitwise OR opera-
tion and the elements of the pSync array will be restored to their initial values.

7.49 shmem_xor

7.49.1 Summary

Performs a bitwise XOR operation on symmetric arrays over the active set of PEs. The active
set of PEs is defined by the triple PE_start, logPE_stride and PE_size.

1.0 FINAL 62

7 LIBRARY ROUTINES

7.49.2 Synopsis

C/C++:

void shmem_short_xor_to_all(short *target, short *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_int_xor_to_all(int *target, int *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_xor_to_all(long *target, long *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longlong_xor_to_all(long long *target, long long *source, int
nreduce, int PE_start, int logPE_stride, int PE_size, long long *pWrk,
long *pSync);

Fortran:

INTEGER pSync(SHMEM_REDUCE_SYNC_SIZE)
INTEGER nreduce, PE_start, logPE_stride, PE_size

CALL SHMEM_INT4_XOR_TO_ALL(target, source, nreduce, PE_start, logPE_stride,
PE_size, pWrk, pSync)

CALL SHMEM_INT8_XOR_TO_ALL(target, source, nreduce, PE_start, logPE_stride,
PE_size, pWrk, pSync)

CALL SHMEM_COMP4_XOR_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

CALL SHMEM_COMP8_XOR_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

7.49.3 Parameters

target Address of the symmetric data object where to store the results of the reduction
operation.

source Address of the symmetric data object that contains the elements for each separate
reduction operation.

nreduce The number of elements in the target and source arrays.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE numbers in the
active set.

PE_size The number of PEs in the active set.

1.0 FINAL 63

7 LIBRARY ROUTINES

pWrk A symmetric work array.

pSync A symmetric work array.

7.49.4 Constraints

• The target array on all PEs in the active set must be ready to accept the results of the
reduction.

• target and source must be the addresses of symmetric data objects.

• If using C/C++, the type of target must match that implied in the Synopsis section.
When calling from Fortran, the data type of target must be as follows:

– For SHMEM_INT4_XOR_TO_ALL(), target must be of type Integer, with element
size of 4 bytes.

– For SHMEM_INT8_XOR_TO_ALL(), target must be of type Integer, with element
size of 8 bytes.

• source must be the same type as target.

• source and target may be the same array, but they must not be overlapping arrays.

• If using C/C++, nreduce must be of type integer. If you are using Fortran, it must be
a default integer value.

• If using C/C++, PE_start must be of type integer. If you are using Fortran, it must be
a default integer value. Its value must be greater than or equal to zero.

• If using C/C++, logPE_stride must be of type integer. If you are using Fortran, it must
be a default integer value.

• If using C/C++, PE_size must be of type integer. If you are using Fortran, it must be a
default integer value. Its value must be less than or equal to the total number of PEs
minus one.

• The pWrk argument must have the same data type as target. In C/C++, this con-
tains max(nreduce/2 + 1, _SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements. In
Fortran, this contains max(nreduce/2 + 1, SHMEM_REDUCE_MIN_WRKDATA_SIZE)
elements.

• In C/C++, pSync must be of type long and size _SHMEM_REDUCE_SYNC_SIZE. In
Fortran, pSync must be of type integer and size SHMEM_REDUCE_SYNC_SIZE. If you
are using Fortran, it must be a default integer value. Every element of this array must
be initialized with the value _SHMEM_SYNC_VALUE (in C/C++) or SHMEM_SYNC_
VALUE (in Fortran) before any of the PEs in the active set enter the reduction routine.

1.0 FINAL 64

7 LIBRARY ROUTINES

• The pWrk and pSync arrays on all PEs in the active set must not be in use from a prior
call to a collective OpenSHMEM routine.

• This routine must be called by all the PEs in the active set at the same point of the
execution path; otherwise undefined behavior results.

7.49.5 Effect

This routine returns the result of performing a bitwise XOR operation on the source data
object of every PE in the active set. The active set of PEs is defined by the triple PE_start,
logPE_stride and PE_size.

7.49.6 Return Values

Upon completion, the target array will be updated with the result of the bitwise XOR oper-
ation and the elements of the pSync array will be restored to their initial values.

7.50 shmem_max

7.50.1 Summary

Computes the maximum value of the source symmetric array over the active set of PEs.

7.50.2 Synopsis

C/C++:

void shmem_short_max_to_all(short *target, short *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_int_max_to_all(int *target, int *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_max_to_all(long *target, long *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_float_max_to_all(float *target, float *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_double_max_to_all(double *target, double *source, int nreduce,
int PE_start, int logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_longlong_max_to_all(long long *target, long long *source, int
nreduce, int PE_start, int logPE_stride, int PE_size, long long *pWrk,
long *pSync);

1.0 FINAL 65

7 LIBRARY ROUTINES

void shmem_longdouble_max_to_all(long double *target, long double *source,
int nreduce, int PE_start, int logPE_stride, int PE_size, long double

*pWrk, long *pSync);

Fortran:

INTEGER pSync(SHMEM_REDUCE_SYNC_SIZE)
INTEGER nreduce, PE_start, logPE_stride, PE_size

CALL SHMEM_INT4_MAX_TO_ALL(target, source, nreduce, PE_start, logPE_stride,
PE_size, pWrk, pSync)

CALL SHMEM_INT8_MAX_TO_ALL(target, source, nreduce, PE_start, logPE_stride,
PE_size, pWrk, pSync)

CALL SHMEM_REAL4_MAX_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

CALL SHMEM_REAL8_MAX_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

CALL SHMEM_REAL16_MAX_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

7.50.3 Parameters

target Address of the symmetric data object where to store the results of the reduction
operation.

source Address of the symmetric data object that contains the elements for each separate
reduction operation.

nreduce The number of elements in the target and source arrays.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE numbers in the
active set.

PE_size The number of PEs in the active set.

pWrk A symmetric work array.

pSync A symmetric work array.

1.0 FINAL 66

7 LIBRARY ROUTINES

7.50.4 Constraints

• The target array on all PEs in the active set must be ready to accept the results of the
reduction.

• target and source must be the addresses of symmetric data objects.

• If using C/C++, the type of target must match that implied in the Synopsis section.
When calling from Fortran, the data type of target must be as follows:

– For SHMEM_INT4_MAX_TO_ALL(), target must be of type Integer, with element
size of 4 bytes.

– For SHMEM_INT8_MAX_TO_ALL(), target must be of type Integer, with element
size of 8 bytes.

– For SHMEM_REAL4_MAX_TO_ALL(), target must be of type Real, with element
size of 4 bytes.

– For SHMEM_REAL8_MAX_TO_ALL(), target must be of type Real, with element
size of 8 bytes.

– For SHMEM_REAL16_MAX_TO_ALL(), target must be of type Real, with element
size of 16 bytes.s

• source must be the same type as target.

• source and target may be the same array, but they must not be overlapping arrays.

• If using C/C++, nreduce must be of type integer. If you are using Fortran, it must be
a default integer value.

• If using C/C++, PE_start must be of type integer. If you are using Fortran, it must be
a default integer value. Its value must be greater than or equal to zero.

• If using C/C++, logPE_stride must be of type integer. If you are using Fortran, it must
be a default integer value.

• If using C/C++, PE_size must be of type integer. If you are using Fortran, it must be a
default integer value. Its value must be less than or equal to the total number of PEs
minus one.

• The pWrk argument must have the same data type as target. In C/C++, this con-
tains max(nreduce/2 + 1, _SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements. In
Fortran, this contains max(nreduce/2 + 1, SHMEM_REDUCE_MIN_WRKDATA_SIZE)
elements.

1.0 FINAL 67

7 LIBRARY ROUTINES

• In C/C++, pSync must be of type long and size _SHMEM_REDUCE_SYNC_SIZE. In
Fortran, pSync must be of type integer and size SHMEM_REDUCE_SYNC_SIZE. If you
are using Fortran, it must be a default integer value. Every element of this array must
be initialized with the value _SHMEM_SYNC_VALUE (in C/C++) or SHMEM_SYNC_
VALUE (in Fortran) before any of the PEs in the active set enter the reduction routine.

• The pWrk and pSync arrays on all PEs in the active set must not be in use from a prior
call to a collective OpenSHMEM routine.

• This routine must be called by all the PEs in the active set at the same point of the
execution path; otherwise undefined behavior results.

7.50.5 Effect

The max reduction routines determine the element with the highest value in array source
across all PEs in the active set. The active set of PEs is defined by the triple PE_start,
logPE_stride and PE_size. The results of the reduction must be stored at address target
on all PEs of the active set.

7.50.6 Return Values

Upon completion, the target array will be updated with the result of the operation and the
elements of the pSync array will be restored to their initial values.

7.51 shmem_min

7.51.1 Summary

Computes the minimum value of symmetric arrays over the active set of PEs. The active set
of PEs is defined by the triplet PE_start, logPE_stride and PE_size.

7.51.2 Synopsis

C/C++:

void shmem_short_min_to_all(short *target, short *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_int_min_to_all(int *target, int *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_min_to_all(long *target, long *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, long *pWrk, long *pSync);

1.0 FINAL 68

7 LIBRARY ROUTINES

void shmem_float_min_to_all(float *target, float *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_double_min_to_all(double *target, double *source, int nreduce,
int PE_start, int logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_longlong_min_to_all(long long *target, long long *source, int
nreduce, int PE_start, int logPE_stride, int PE_size, long long *pWrk,
long *pSync);

void shmem_longdouble_min_to_all(long double *target, long double *source,
int nreduce, int PE_start, int logPE_stride, int PE_size, long double

*pWrk, long *pSync);

Fortran:

INTEGER pSync(SHMEM_REDUCE_SYNC_SIZE)
INTEGER nreduce, PE_start, logPE_stride, PE_size

CALL SHMEM_INT4_MIN_TO_ALL(target, source, nreduce, PE_start, logPE_stride,
PE_size, pWrk, pSync)

CALL SHMEM_INT8_MIN_TO_ALL(target, source, nreduce, PE_start, logPE_stride,
PE_size, pWrk, pSync)

CALL SHMEM_REAL4_MIN_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

CALL SHMEM_REAL8_MIN_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

CALL SHMEM_REAL16_MIN_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

7.51.3 Parameters

target Address of the symmetric data object where to store the results of the reduction
operation.

source Address of the symmetric data object that contains the elements for each separate
reduction operation.

nreduce The number of elements in the target and source arrays.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE numbers in the
active set.

PE_size The number of PEs in the active set.

1.0 FINAL 69

7 LIBRARY ROUTINES

pWrk A symmetric work array.

pSync A symmetric work array.

7.51.4 Constraints

• The target array on all PEs in the active set must be ready to accept the results of the
reduction.

• target and source must be the addresses of symmetric data objects.

• If using C/C++, the type of target must match that implied in the Synopsis section.
When calling from Fortran, the data type of target must be as follows:

– For SHMEM_INT4_MIN_TO_ALL(), target must be of type Integer, with element
size of 4 bytes.

– For SHMEM_INT8_MIN_TO_ALL(), target must be of type Integer, with element
size of 8 bytes.

– For SHMEM_REAL4_MIN_TO_ALL(), target must be of type Real, with element
size of 4 bytes.

– For SHMEM_REAL8_MIN_TO_ALL(), target must be of type Real, with element
size of 8 bytes.

– For SHMEM_REAL16_MIN_TO_ALL(), target must be of type Real, with element
size of 16 bytes.

• source must be the same type as target.

• source and target may be the same array, but they must not be overlapping arrays.

• If using C/C++, nreduce must be of type integer. If you are using Fortran, it must be
a default integer value.

• If using C/C++, PE_start must be of type integer. If you are using Fortran, it must be
a default integer value. Its value must be greater than or equal to zero.

• If using C/C++, logPE_stride must be of type integer. If you are using Fortran, it must
be a default integer value.

• If using C/C++, PE_size must be of type integer. If you are using Fortran, it must be a
default integer value. Its value must be less than or equal to the total number of PEs
minus one.

1.0 FINAL 70

7 LIBRARY ROUTINES

• The pWrk argument must have the same data type as target. In C/C++, this con-
tains max(nreduce/2 + 1, _SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements. In
Fortran, this contains max(nreduce/2 + 1, SHMEM_REDUCE_MIN_WRKDATA_SIZE)
elements.

• In C/C++, pSync must be of type long and size _SHMEM_REDUCE_SYNC_SIZE. In
Fortran, pSync must be of type integer and size SHMEM_REDUCE_SYNC_SIZE. If you
are using Fortran, it must be a default integer value. Every element of this array must
be initialized with the value _SHMEM_SYNC_VALUE (in C/C++) or SHMEM_SYNC_
VALUE (in Fortran) before any of the PEs in the active set enter the reduction routine.

• The pWrk and pSync arrays on all PEs in the active set must not be in use from a prior
call to a collective OpenSHMEM routine.

• This routine must be called by all the PEs in the active set at the same point of the
execution path; otherwise undefined behavior results.

7.51.5 Effect

The min reduction routines determine the element with the lowest value in array source
across all PEs in the active set. The active set of PEs is defined by the triple PE_start,
logPE_stride and PE_size. The results of the reduction must be stored at address target
on all PEs of the active set.

7.51.6 Return Values

Upon completion, the target array will be updated with the result of the operation and the
elements of the pSync array will be restored to their initial values.

7.52 shmem_sum

7.52.1 Summary

Computes the summation of symmetric arrays over the active set of PEs.

7.52.2 Synopsis

C/C++:

1.0 FINAL 71

7 LIBRARY ROUTINES

void shmem_short_sum_to_all(short *target, short *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_int_sum_to_all(int *target, int *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_sum_to_all(long *target, long *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_float_sum_to_all(float *target, float *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_double_sum_to_all(double *target, double *source, int nreduce,
int PE_start, int logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_longlong_sum_to_all(long long *target, long long *source, int
nreduce, int PE_start, int logPE_stride, int PE_size, long long *pWrk,
long *pSync);

void shmem_longdouble_sum_to_all(long double *target, long double *source,
int nreduce, int PE_start, int logPE_stride, int PE_size, long double

*pWrk, long *pSync);
void shmem_complexf_sum_to_all(float complex *target, float complex

*source, int nreduce, int PE_start, int logPE_stride, int PE_size, float
complex *pWrk, long *pSync);

void shmem_complexd_sum_to_all(double complex *target, double complex

*source, int nreduce, int PE_start, int logPE_stride, int PE_size,
double complex *pWrk, long *pSync);

Fortran:

INTEGER pSync(SHMEM_REDUCE_SYNC_SIZE)
INTEGER nreduce, PE_start, logPE_stride, PE_size

CALL SHMEM_INT4_SUM_TO_ALL(target, source, nreduce, PE_start, logPE_stride,
PE_size, pWrk, pSync)

CALL SHMEM_INT8_SUM_TO_ALL(target, source, nreduce, PE_start, logPE_stride,
PE_size, pWrk, pSync)

CALL SHMEM_REAL4_SUM_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

CALL SHMEM_REAL8_SUM_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

CALL SHMEM_REAL16_SUM_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

1.0 FINAL 72

7 LIBRARY ROUTINES

7.52.3 Parameters

target Address of the symmetric data object where to store the results of the reduction
operation.

source Address of the symmetric data object that contains the elements for each separate
reduction operation.

nreduce The number of elements in the target and source arrays.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE numbers in the
active set.

PE_size The number of PEs in the active set.

pWrk A symmetric work array.

pSync A symmetric work array.

7.52.4 Constraints

• The target array on all PEs in the active set must be ready to accept the results of the
reduction.

• target and source must be the addresses of symmetric data objects.

• If using C/C++, the type of target must match that implied in the Synopsis section.
When calling from Fortran, the data type of target must be as follows:

– For SHMEM_INT4_SUM_TO_ALL(), target must be of type Integer, with element
size of 4 bytes.

– For SHMEM_INT8_SUM_TO_ALL(), target must be of type Integer, with element
size of 8 bytes.

– For SHMEM_REAL4_SUM_TO_ALL(), target must be of type Real, with element
size of 4 bytes.

– For SHMEM_REAL8_SUM_TO_ALL(), target must be of type Real, with element
size of 8 bytes.

– For SHMEM_REAL16_SUM_TO_ALL(), target must be of type Real, with element
size of 16 bytes.

• source must be the same type as target.

1.0 FINAL 73

7 LIBRARY ROUTINES

• source and target may be the same array, but they must not be overlapping arrays.

• If using C/C++, nreduce must be of type integer. If you are using Fortran, it must be
a default integer value.

• If using C/C++, PE_start must be of type integer. If you are using Fortran, it must be
a default integer value. Its value must be greater than or equal to zero.

• If using C/C++, logPE_stride must be of type integer. If you are using Fortran, it must
be a default integer value.

• If using C/C++, PE_size must be of type integer. If you are using Fortran, it must be a
default integer value. Its value must be less than or equal to the total number of PEs
minus one.

• The pWrk argument must have the same data type as target. In C/C++, this con-
tains max(nreduce/2 + 1, _SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements. In
Fortran, this contains max(nreduce/2 + 1, SHMEM_REDUCE_MIN_WRKDATA_SIZE)
elements.

• In C/C++, pSync must be of type long and size _SHMEM_REDUCE_SYNC_SIZE. In
Fortran, pSync must be of type integer and size SHMEM_REDUCE_SYNC_SIZE. If you
are using Fortran, it must be a default integer value. Every element of this array must
be initialized with the value _SHMEM_SYNC_VALUE (in C/C++) or SHMEM_SYNC_
VALUE (in Fortran) before any of the PEs in the active set enter the reduction routine.

• The pWrk and pSync arrays on all PEs in the active set must not be in use from a prior
call to a collective OpenSHMEM routine.

• This routine must be called by all the PEs in the active set at the same point of the
execution path; otherwise undefined behavior results.

7.52.5 Effect

The sum reduction routines compute the summation of nreduce elements in array source
across all PEs in the active set. The active set of PEs is defined by the triple PE_start,
logPE_stride and PE_size. The results of the reduction must be stored at address target
on all PEs of the active set.

7.52.6 Return Values

Upon completion, the target array will be updated with the result of the operation and the
elements of the pSync array will be restored to their initial values.

1.0 FINAL 74

7 LIBRARY ROUTINES

7.53 shmem_prod

7.53.1 Summary

Computes the product of symmetric arrays over the active set of PEs.

7.53.2 Synopsis

C/C++:

void shmem_short_prod_to_all(short *target, short *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_int_prod_to_all(int *target, int *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_prod_to_all(long *target, long *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_float_prod_to_all(float *target, float *source, int nreduce, int
PE_start, int logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_double_prod_to_all(double *target, double *source, int nreduce,
int PE_start, int logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_longlong_prod_to_all(long long *target, long long *source, int
nreduce, int PE_start, int logPE_stride, int PE_size, long long *pWrk,
long *pSync);

void shmem_longdouble_prod_to_all(long double *target, long double *source,
int nreduce, int PE_start, int logPE_stride, int PE_size, long double

*pWrk, long *pSync);
void shmem_complexf_prod_to_all(float complex *target, float complex

*source, int nreduce, int PE_start, int logPE_stride, int PE_size, float
complex *pWrk, long *pSync);

void shmem_complexd_prod_to_all(double complex *target, double complex

*source, int nreduce, int PE_start, int logPE_stride, int PE_size,
double complex *pWrk, long *pSync);

Fortran:

INTEGER pSync(SHMEM_REDUCE_SYNC_SIZE)
INTEGER nreduce, PE_start, logPE_stride, PE_size

CALL SHMEM_INT4_PROD_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

CALL SHMEM_INT8_PROD_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

1.0 FINAL 75

7 LIBRARY ROUTINES

CALL SHMEM_REAL4_PROD_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

CALL SHMEM_REAL8_PROD_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

CALL SHMEM_REAL16_PROD_TO_ALL(target, source, nreduce, PE_start,
logPE_stride, PE_size, pWrk, pSync)

7.53.3 Parameters

target Address of the symmetric data object where to store the results of the reduction
operation.

source Address of the symmetric data object that contains the elements for each separate
reduction operation.

nreduce The number of elements in the target and source arrays.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE numbers in the
active set.

PE_size The number of PEs in the active set.

pWrk A symmetric work array.

pSync A symmetric work array.

7.53.4 Constraints

• The target array on all PEs in the active set must be ready to accept the results of the
reduction.

• target and source must be the addresses of symmetric data objects.

• If using C/C++, the type of target must match that implied in the Synopsis section.
When calling from Fortran, the data type of target must be as follows:

– For SHMEM_INT4_PROD_TO_ALL(), target must be of type Integer, with ele-
ment size of 4 bytes.

– For SHMEM_INT8_PROD_TO_ALL(), target must be of type Integer, with ele-
ment size of 8 bytes.

1.0 FINAL 76

7 LIBRARY ROUTINES

– For SHMEM_REAL4_PROD_TO_ALL(), target must be of type Real, with element
size of 4 bytes.

– For SHMEM_REAL8_PROD_TO_ALL(), target must be of type Real, with element
size of 8 bytes.

– For SHMEM_REAL16_PROD_TO_ALL(), target must be of type Real, with ele-
ment size of 16 bytes.

• source must be the same type as target.

• source and target may be the same array, but they must not be overlapping arrays.

• If using C/C++, nreduce must be of type integer. If you are using Fortran, it must be
a default integer value.

• If using C/C++, PE_start must be of type integer. If you are using Fortran, it must be
a default integer value. Its value must be greater than or equal to zero.

• If using C/C++, logPE_stride must be of type integer. If you are using Fortran, it must
be a default integer value.

• If using C/C++, PE_size must be of type integer. If you are using Fortran, it must be a
default integer value. Its value must be less than or equal to the total number of PEs
minus one.

• The pWrk argument must have the same data type as target. In C/C++, this con-
tains max(nreduce/2 + 1, _SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements. In
Fortran, this contains max(nreduce/2 + 1, SHMEM_REDUCE_MIN_WRKDATA_SIZE)
elements.

• In C/C++, pSync must be of type long and size _SHMEM_REDUCE_SYNC_SIZE. In
Fortran, pSync must be of type integer and size SHMEM_REDUCE_SYNC_SIZE. If you
are using Fortran, it must be a default integer value. Every element of this array must
be initialized with the value _SHMEM_SYNC_VALUE (in C/C++) or SHMEM_SYNC_
VALUE (in Fortran) before any of the PEs in the active set enter the reduction routine.

• The pWrk and pSync arrays on all PEs in the active set must not be in use from a prior
call to a collective OpenSHMEM routine.

• This routine must be called by all the PEs in the active set at the same point of the
execution path; otherwise undefined behavior results.

1.0 FINAL 77

7 LIBRARY ROUTINES

7.53.5 Effect

The prod reduction routines compute the summation of nreduce elements in array source
across all PEs in the active set. The active set of PEs is defined by the triple PE_start,
logPE_stride and PE_size. The results of the reduction must be stored at address target
on all PEs of the active set.

7.53.6 Return Values

Upon completion, the target array will be updated with the result of the operation and the
elements of the pSync array will be restored to their initial values.

7.54 Collect Routines

7.55 shmem_collect

7.55.1 Summary

Concatenates blocks of data from multiple processing elements (PEs) to an array in every
PE .

7.55.2 Synopsis

C/C++:

void shmem_collect32(void *target, const void *source, size_t nelems, int
PE_start, int logPE_stride, int PE_size, long *pSync);

void shmem_collect64(void *target, const void *source, size_t nelems, int
PE_start, int logPE_stride, int PE_size, long *pSync);

void shmem_fcollect32(void *target, const void *source, size_t nelems, int
PE_start, int logPE_stride, int PE_size, long *pSync);

void shmem_fcollect64(void *target, const void *source, size_t nelems, int
PE_start, int logPE_stride, int PE_size, long *pSync);

Fortran:

INTEGER nelems
INTEGER PE_start, logPE_stride, PE_size
INTEGER pSync(SHMEM_COLLECT_SYNC_SIZE)

CALL SHMEM_COLLECT4(target, source, nelems, PE_start, logPE_stride,
PE_size, pSync)

1.0 FINAL 78

7 LIBRARY ROUTINES

CALL SHMEM_COLLECT8(target, source, nelems, PE_start, logPE_stride,
PE_size, pSync)

CALL SHMEM_FCOLLECT4(target, source, nelems, PE_start, logPE_stride,
PE_size, pSync)

CALL SHMEM_FCOLLECT8(target, source, nelems, PE_start, logPE_stride,
PE_size, pSync)

7.55.3 Parameters

target Address of the symmetric data object where to store the results of the collect opera-
tion.

source Address of the symmetric data object that contains the data to be concatenated.

nelems The number of elements in the target and source arrays.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE numbers in the
active set.

PE_size The number of PEs in the active set.

pSync A symmetric work array.

7.55.4 Constraints

• The target array on all PEs in the active set must be ready to accept the results of the
concatenation. It must also be large enough to accept the results of the concatenation.

• target and source must be the addresses of symmetric data objects.

• Data types for target are as follows:

– For shmem_collect32(), shmem_fcollect32(), SHMEM_COLLECT4 and SHMEM_
FCOLLECT4, target must be of type Integer, with element size of 32 bytes.

– For shmem_collect64(), shmem_fcollect64(), SHMEM_COLLECT8 and SHMEM_
FCOLLECT8, target must be of type Integer, with element size of 64 bytes.

• source must be the same type as target.

• source and target may be the same array, but they must not be overlapping arrays.

1.0 FINAL 79

7 LIBRARY ROUTINES

• If using C/C++, nelems must be of type integer. If you are using Fortran, it must be a
default integer value.

• If using C/C++, PE_start must be of type integer. If you are using Fortran, it must be
a default integer value. Its value must be greater than or equal to zero.

• If using C/C++, logPE_stride must be of type integer. If you are using Fortran, it must
be a default integer value.

• If using C/C++, PE_size must be of type integer. If you are using Fortran, it must be a
default integer value. Its value must be less than or equal to the total number of PEs
minus one.

• The pSync array on all PEs in the active set must not be in use from a prior call to a
collective OpenSHMEM routine.

• This routine must be called by all the PEs in the active set at the same point of the
execution path; otherwise undefined behavior results.

7.55.5 Effect

The collect routines concatenate nelems elements from array source across all PEs in the
active set, and store the result in array target. The fcollect routines require that nelems
be the same value in all participating PEs, while the collect routines allow nelems to vary
from PE to PE.

7.55.6 Return Values

Upon successful completion of these routines, target will have the result of the concatena-
tion.

7.56 Broadcast Routines

7.57 shmem_broadcast

7.57.1 Summary

Copy a data object from a designated PE to a target location on all other PEs of the active
set. See Figure 4 for a diagram of a simple broadcast operation.

1.0 FINAL 80

7 LIBRARY ROUTINES

Fig. 4: Diagram of a simple broadcast operation.

7.57.2 Synopsis

C/C++:

void shmem_broadcast32(void *target, const void *source, size_t nelems, int
PE_root, int PE_start, int logPE_stride, int PE_size, long *pSync);

void shmem_broadcast64(void *target, const void *source, size_t nelems, int
PE_root, int PE_start, int logPE_stride, int PE_size, long *pSync);

Fortran:

INTEGER nelems
INTEGER PE_start, logPE_stride, PE_size
INTEGER pSync(SHMEM_COLLECT_SYNC_SIZE)

CALL SHMEM_BROADCAST4(target, source, nelems, PE_root, PE_start,
logPE_stride, PE_size, pSync)

CALL SHMEM_BROADCAST8(target, source, nelems, PE_root, PE_start,
logPE_stride, PE_size, pSync)

CALL SHMEM_BROADCAST32(target, source, nelems, PE_root, PE_start,
logPE_stride, PE_size, pSync)

CALL SHMEM_BROADCAST64(target, source, nelems, PE_root, PE_start,
logPE_stride, PE_size, pSync)

1.0 FINAL 81

7 LIBRARY ROUTINES

7.57.3 Parameters

target Address of the symmetric data object where to store the data.

source Address of the symmetric data object that contains data to be copied.

nelems The number of elements in the target and source arrays.

PE_root The virtual PE number from which data will be copied.

PE_start The lowest virtual PE number of the active set of PEs.

logPE_stride The log (base 2) of the stride between consecutive virtual PE numbers in the
active set.

PE_size The number of PEs in the active set.

pSync A symmetric work array.

7.57.4 Constraints

• The target array on all PEs in the active set must be ready to accept the results of the
broadcast.

• target and source must be the addresses of symmetric data objects.

• Data types for target are as follows:

– For shmem_broadcast8() and shmem_broadcast64(), target may be of any
non character type that has an element size of 64 bits. No Fortran derived types
or C/C++ structures are allowed.

– For shmem_broadcast32(), target may be of any non character type that has an
element size of 32 bits. No Fortran derived types or C/C++ structures are allowed.

– For shmem_broadcast4(), target may be of any non character type that has an
element size of 32 bits.

• source must be the same type as target.

• source and target may be the same array, but they must not be overlapping arrays.

• If using C/C++, nelems must be of type integer. If you are using Fortran, it must be a
default integer value.

• If using C/C++, PE_start must be of type integer. If you are using Fortran, it must be
a default integer value. Its value must be greater than or equal to zero.

1.0 FINAL 82

7 LIBRARY ROUTINES

• If using C/C++, logPE_stride must be of type integer. If you are using Fortran, it must
be a default integer value.

• If using C/C++, PE_size must be of type integer. If you are using Fortran, it must be a
default integer value. Its value must be less than or equal to the total number of PEs
minus one.

• In C/C++, pSync must be of type long and size _SHMEM_BCAST_SYNC_SIZE. In For-
tran, pSync must be of type integer and size SHMEM_BCAST_SYNC_SIZE. Every
element of this array must be initialized with the value _SHMEM_SYNC_VALUE (in
C/C++) or SHMEM_SYNC_VALUE (in Fortran) before any of the PEs in the active set
enter the broadcast.

• The pSync array on all PEs in the active set must not be in use from a prior call to a
collective OpenSHMEM routine.

• This routine must be called by all the PEs in the active set at the same point of the
execution path; otherwise undefined behavior results.

7.57.5 Effect

The broadcast routines write the data at address source of the PE specified by PE_root to
address target on all other PEs in the active set. The active set of PEs is defined by the
triple PE_start, logPE_stride and PE_size. The data is not copied to the target address
on the PE specified by PE_root.

Before returning, the broadcast routines ensure that the elements of the pSync array are
restored to their initial values.

7.57.6 Return Values

None.

7.58 Lock Routines

The OpenSHMEM lock routines manage mutual exclusion memory locks. These routines are
appropriate for protecting a critical region from simultaneous update by multiple PEs.

7.59 shmem_set_lock

7.59.1 Summary

Sets a mutual exclusion memory lock after it is no longer in use by another process.

1.0 FINAL 83

7 LIBRARY ROUTINES

7.59.2 Synopsis

C/C++:

void shmem_set_lock(long *lock);

Fortran:

INTEGER lock

CALL SHMEM_SET_LOCK(lock)

7.59.3 Parameters

lock Address of a symmetric data object that is a scalar variable or an array of length 1.

7.59.4 Constraints

• The value at address lock must be set to 0 on all PEs prior to the first use.

• If using C/C++, lock must be of type integer. If you are using Fortran, it must be of
default kind.

7.59.5 Effect

The shmem_set_lock() routine sets a mutual exclusion lock after waiting for the lock to be
freed by any other PE currently holding the lock. Waiting PEs are assured of getting the lock
in a first-come, first-served manner.

7.59.6 Return Values

None.

7.60 shmem_clear_lock

7.60.1 Summary

Releases a lock previously set by the calling PE.

1.0 FINAL 84

7 LIBRARY ROUTINES

7.60.2 Synopsis

C/C++:

void shmem_clear_lock(long *lock);

Fortran:

INTEGER lock

CALL SHMEM_CLEAR_LOCK(lock)

7.60.3 Parameters

lock Address of a symmetric data object that is a scalar variable or an array of length 1.

7.60.4 Constraints

• If using C/C++, lock must be of type integer. If you are using Fortran, it must be of
default kind.

• The lock can only be released by the PE that previously set the lock.

7.60.5 Effect

The shmem_clear_lock() routine releases a lock previously set by shmem_set_lock() af-
ter ensuring that all local and remote stores initiated in the critical region are complete.

7.60.6 Return Values

None.

7.61 shmem_test_lock

7.61.1 Summary

Sets a mutual exclusion lock only if it is currently cleared.

1.0 FINAL 85

7 LIBRARY ROUTINES

7.61.2 Synopsis

C/C++:

int shmem_test_lock(long *lock);

Fortran:

INTEGER lock, SHMEM_TEST_LOCK

I = SHMEM_SET_LOCK(lock)

7.61.3 Parameters

lock Address of a symmetric data object that is a scalar variable or an array of length 1.

7.61.4 Constraints

• If using C/C++, lock must be of type integer. If you are using Fortran, it must be of
default kind.

7.61.5 Effect

The shmem_test_lock() function sets a mutual exclusion lock only if it is currently cleared.
By using this function, a PE can avoid blocking on a set lock. If the lock is currently set, the
function returns without waiting.

7.61.6 Return Values

0 The lock was originally cleared and this call was able to set the lock.

1 The lock had been set and the call returned without waiting to set the lock.

Note to implementers: the lock variable is initialized to 0 everywhere. Once set, the value
of the lock should be treated as opaque to allow implementations freedom to optimize lock
structures, e.g. for specific hardware operations.

7.62 Cache Management Routines

The OpenSHMEM specification defines these routines to maintain application compatibility.

The cache management routines allow the OpenSHMEM implementation to take advantage
of hardware cache to improve application performance.

1.0 FINAL 86

7 LIBRARY ROUTINES

7.63 shmem_set_cache_inv

7.63.1 Summary

Enables automatic cache coherency mode.

7.63.2 Synopsis

C/C++:

void shmem_set_cache_inv(void);

Fortran:

CALL SHMEM_SET_CACHE_INV()

7.63.3 Parameters

None.

7.63.4 Constraints

None.

7.63.5 Effect

Enables the OpenSHMEM API to automatically decide the best strategy for cache coherency.

7.63.6 Return Values

None.

7.64 shmem_set_cache_line_inv

7.64.1 Summary

Enable cache coherency for a specific object only.

1.0 FINAL 87

7 LIBRARY ROUTINES

7.64.2 Synopsis

C/C++:

void shmem_set_cache_line_inv(void *target);

Fortran:

CALL SHMEM_SET_CACHE_LINE_INV(target)

7.64.3 Parameters

target Address of the symmetric data object.

7.64.4 Constraints

• If using C/C++, target can be of any non character type. If you are using Fortran, it
can be of any kind.

7.64.5 Effect

Enables automatic cache coherency mode for the cache line associated with the address of
target only.

7.64.6 Return Values

None.

7.65 shmem_clear_cache_inv

7.65.1 Summary

Disable cache coherency.

7.65.2 Synopsis

C/C++:

void shmem_clear_cache_inv(void);

Fortran:

CALL SHMEM_CLEAR_CACHE_INV()

1.0 FINAL 88

7 LIBRARY ROUTINES

7.65.3 Parameters

None.

7.65.4 Constraints

None.

7.65.5 Effect

Disables automatic cache coherency mode previously enabled by shmem_set_cache_inv()
or shmem_set_cache_line_inv().

7.65.6 Return Values

None.

7.66 shmem_clear_cache_line_inv

7.66.1 Summary

Disable cache coherency.

7.66.2 Synopsis

C/C++:

void shmem_clear_cache_line_inv(void* target);

Fortran:

CALL SHMEM_CLEAR_CACHE_LINE_INV(target)

7.66.3 Parameters

None.

7.66.4 Constraints

None.

1.0 FINAL 89

7 LIBRARY ROUTINES

7.66.5 Effect

Disables automatic cache coherency mode for the cache line associated with the address of
target only.

7.66.6 Return Values

None.

7.67 shmem_udcflush

7.67.1 Summary

Makes the entire user data cache coherent.

7.67.2 Synopsis

C/C++:

void shmem_udcflush(void);

Fortran:

CALL SHMEM_UDCFLUSH()

7.67.3 Parameters

None.

7.67.4 Constraints

None.

7.67.5 Effect

Makes the entire user data cache coherent.

7.67.6 Return Values

None.

1.0 FINAL 90

7 LIBRARY ROUTINES

7.68 shmem_udcflush_line

7.68.1 Summary

Enable cache coherency for a specified data object only.

7.68.2 Synopsis

C/C++:

void shmem_udcflush_line(void *target);

Fortran:

CALL SHMEM_UDCFLUSH_LINE(target)

7.68.3 Parameters

target Address of the symmetric data object.

7.68.4 Constraints

• If using C/C++, target can be of any non character type. If you are using Fortran, it
can be of any kind.

7.68.5 Effect

Makes coherent the cache line that corresponds with the address specified by target.

7.68.6 Return Values

None.

1.0 FINAL 91

8 LIBRARY CONSTANTS

8 Library Constants

8.1 Constants Related To Reduction Operations

8.1.1 SHMEM_BCAST_SYNC_SIZE, _SHMEM_BCAST_SYNC_SIZE

Length of the pSync arrays needed for broadcast operations. The value of this constant is
implementation specific. Refer to the Broadcast Routines section under Library Rou-
tines for more information about the usage of this constant.

8.1.2 SHMEM_SYNC_VALUE, _SHMEM_SYNC_VALUE

Holds the value used to initialize the elements of pSync arrays. The value of this constant is
implementation specific.

8.1.3 SHMEM_REDUCE_SYNC_SIZE, _SHMEM_REDUCE_SYNC_SIZE

Length of the work arrays needed for reduction operations. The value of this constant is im-
plementation specific. Refer to the Reduction Routines section under Library Routines
for more information about the usage of this constant.

8.1.4 SHMEM_BARRIER_SYNC_SIZE, _SHMEM_BARRIER_SYNC_SIZE

Length of the work array needed for barrier operations. The value of this constant is imple-
mentation specific. Refer to the Barrier Synchronization Routines section under Library
Routines for more information about the usage of this constant.

8.1.5 SHMEM_COLLECT_SYNC_SIZE, _SHMEM_COLLECT_SYNC_SIZE

Length of the work array needed for collect operations. The value of this constant is im-
plementation specific. Refer to the Collect Routines section under Library Routines for
more information about the usage of this constant.

8.1.6 SHMEM_REDUCE_MIN_WRKDATA_SIZE, _SHMEM_REDUCE_MIN_WRKDATA_
SIZE

Minimum length of work arrays used in various collective operations.

1.0 FINAL 92

9 ENVIRONMENT VARIABLES

9 Environment Variables

Consistent with the SGI implementation of SHMEM, the OpenSHMEM specification currently
provides a set of environment variables that allows users to affect run-time behavior:

Variable Value Function

SMA_VERSION any print the library version at start-up
SMA_INFO any print helpful text about all these environment variables
SMA_SYMMETRIC_SIZE non-negative integer number of bytes to allocate for symmetric heap
SMA_DEBUG any enable debugging messages

Implementations are free to define their own environment variables.

1.0 FINAL 93

10 WRITING OPENSHMEM PROGRAMS

10 Writing OpenSHMEM Programs

10.1 Incorporating OpenSHMEM into Programs

C and C++ programs that use the OpenSHMEM library must

#include <shmem.h>

All Fortran OpenSHMEM programs should

include ’shmem.fh’

and Fortran OpenSHMEM programs that use constants defined by OpenSHMEM must

include ’shmem.fh’

10.1.1 Compatibility Note

Implementations must also provide these header files so that they can be referenced in C
and C++ as

#include <mpp/shmem.h>

and in Fortran as

include ’mpp/shmem.fh’

for backward compatbility with OpensHMEM 1.0 and SGI SHMEM.

10.2 Initialization

An OpenSHMEM program must call start_pes() (See Section Subsection 7.1.1) before any
other OpenSHMEM routine. If start_pes() is not called first, the subsequent behavior of
OpenSHMEM is undefined. Calling start_pes() more than once has no subsequent effect.
The parameter to start_pes() is ignored; the number of PEs is taken from the invoking
environment.

1.0 FINAL 94

11 COMPILING AND RUNNING APPLICATIONS

11 Compiling and Running Applications

The OpenSHMEM specification is silent regarding how OpenSHMEM programs are compiled,
linked and run. This section shows some examples of how wrapper programs could be uti-
lized to compile and launch applications. The commands are styled after wrapper programs
found in many MPI implementations.

11.1 Compilation

11.1.1 Applications written in C

Assuming that the implementation provides a wrapper program named oshcc, to aid in the
compilation of C applications, the wrapper could be called as follows:

oshcc <compiler options> -o myprogram myprogram.c

The program arguments for oshcc are:

<compiler options> Options understood by the underlying C compiler called by oshcc.

11.2 Applications written in C++

Assuming that the implementation provides a wrapper program named oshCC, to aid in the
compilation of C++ applications, the wrapper could be called as follows:

oshCC <compiler options> -o myprogram myprogram.cpp

The program arguments for oshCC are:

<compiler options> Options understood by the underlying C++ compiler called by oshCC.

11.3 Applications written in Fortran

Assuming that the implementation provides a wrapper program named oshfort, to aid in
the compilation of Fortran applications, the wrapper could be called as follows:

oshfort <compiler options> -o myprogram myprogram.f

The program arguments for oshfort are:

<compiler options> Options understood by the underlying Fortran compiler called by osh-
fort.

1.0 FINAL 95

12 RUNNING APPLICATIONS

12 Running Applications

Assuming that the implementation provides a wrapper program named oshrun, to launch
OpenSHMEM applications, the wrapper could be called as follows:

oshrun <additional options> -np <#> <program>

The program arguments for oshrun are:

<additional options> options passed to the underlying launcher

-np <#> The number of processing elements (PEs) to be used in the execution.

<program> The program executable to be launched.

1.0 FINAL 96

13 EXAMPLES

13 Examples

1.0 FINAL 97

14 C EXAMPLES

14 C Examples

Listing 1: Program that is a trivial Hello World.
1 #include <mpp/shmem.h>
2

3 int main(int argc, char* argv[])
4 {
5 int i, me, my_num_pes;
6 /*
7 ** Starts/Initializes SHMEM/OpenSHMEM
8 */
9 start_pes(0);

10 /*
11 ** Fetch the number or processes
12 ** Some implementations use num_pes();
13 */
14 my_num_pes = _num_pes();
15 /*
16 ** Assign my process ID to me
17 */
18 me = _my_pe();
19 printf("Hello World from %d of %d\n",me,my_num_pes);
20 return 0;
21 }

Listing 2: Program that implements a Circular Shift.
1 /* circular shift bbb into aaa */
2 #include <mpp/shmem.h>
3

4 int aaa, bbb;
5

6 int main (int argc, char * argv[])
7 {
8 start_pes(0);
9 shmem_int_get(&aaa, &bbb, 1,(_my_pe() + 1)% _num_pes());

10 shmem_barrier_all();
11 }

1.0 FINAL 98

14 C EXAMPLES

Listing 3: Program that demonstrates the use of shmalloc.
1 /*
2 * OpenSHMEM program to allocate (shmalloc) symmetric memory (1 long integer),
3 * and then free it. Success of allocation is untested.
4 *
5 * This program produces no output.
6 */
7

8 #include <mpp/shmem.h>
9

10 int
11 main(void)
12 {
13 long *x;
14 start_pes(0);
15 x = (long *) shmalloc(sizeof(*x));
16 shfree(x);
17 return 0;
18 }

Listing 4: Program that implements Ping.
1 /*
2 * test if PE is accessible
3 *
4 */
5

6 #include <stdio.h>
7

8 #include <mpp/shmem.h>
9

10 int
11 main(void)
12 {
13 int me, npes;
14

15 setbuf(stdout, NULL);
16

17 start_pes(0);
18 me = _my_pe();
19 npes = _num_pes();
20

21 if (me == 0) {
22 int i;
23 for (i = 1; i < npes; i += 1) {
24 printf("From %d: PE %d is ", me, i);
25 printf("%s", shmem_pe_accessible(i) ? "" : "NOT ");
26 printf("accessible\n");
27 }
28 }
29

30 return 0;
31 }

1.0 FINAL 99

14 C EXAMPLES

Listing 5: Program that uses the MAX reduction.
1 /*
2 * reduce [0,1,2] + _my_pe() across 4 PEs with MAX()
3 *
4 *
5 */
6

7 #include <stdio.h>
8 #include <string.h>
9

10 #include <mpp/shmem.h>
11

12 long pSync[_SHMEM_BCAST_SYNC_SIZE];
13

14 #define N 3
15

16 long src[N];
17 long dst[N];
18 long pWrk[_SHMEM_REDUCE_SYNC_SIZE];
19

20 int
21 main(void)
22 {
23 int i;
24

25 for (i = 0; i < SHMEM_BCAST_SYNC_SIZE; i += 1) {
26 pSync[i] = _SHMEM_SYNC_VALUE;
27 }
28

29 start_pes(0);
30

31 for (i = 0; i < N; i += 1) {
32 src[i] = _my_pe() + i;
33 }
34 shmem_barrier_all();
35

36 shmem_long_max_to_all(dst, src, N, 0, 0, _num_pes(), pWrk, pSync);
37

38 printf("%d/%d dst =", _my_pe(), _num_pes());
39 for (i = 0; i < N; i+= 1) {
40 printf(" %d", dst[i]);
41 }
42 printf("\n");
43

44 return 0;
45 }

1.0 FINAL 100

14 C EXAMPLES

Listing 6: Program that makes use of strided puts.
1 /*
2 * This program is an adaptation of examples found in the man pages
3 * of SGI’s SHMEM implementation.
4 *
5 * In this program, iput is used to select 5 elements from array source separated by
6 * a stride of 2 and write them to array target using a stride of 1.
7 *
8 * Given the array source = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
9 * iput will select 5 elements from array source on PE 0, using a stride of 2:

10 *
11 * selected elements = { 1, 3, 5, 7, 9 }
12 *
13 * These elements will then be written to the array source on PE 1 using a stride of 1:
14 *
15 * target = { 1, 3, 5, 7, 9 }
16 *
17 */
18

19 #include <stdio.h>
20 #include <mpp/shmem.h>
21

22 int
23 main(void)
24 {
25 short source[10] = { 1, 2, 3, 4, 5,
26 6, 7, 8, 9, 10 };
27 static short target[10];
28 int me;
29

30 start_pes(0);
31 me = _my_pe();
32

33 if (me == 0) {
34 /* put 10 words into target on PE 1 */
35 shmem_short_iput(target, source, 1, 2, 5, 1);
36 }
37

38 shmem_barrier_all(); /* sync sender and receiver */
39

40 if (me == 1) {
41 printf("target on PE %d is %hd %hd %hd %hd %hd\n", me,
42 target[0], target[1], target[2],
43 target[3], target[4]);
44 }
45 shmem_barrier_all(); /* sync before exiting */
46

47 return 0;
48 }

1.0 FINAL 101

14 C EXAMPLES

Listing 7: Program that implements an ALL-2-ALL (header)
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <unistd.h>
4

5

6 typedef signed char int8 ;
7 typedef unsigned char uint8 ;
8 typedef short int16;
9 typedef unsigned short uint16;

10 typedef int int32;
11 typedef unsigned int uint32;
12 typedef long int64;
13 typedef unsigned long uint64;
14

15 /* timing */
16

17 #include <sys/time.h>
18 #include <time.h>
19

20 /* wall-clock time */
21

22 static double wall(void)
23

24 {
25 struct timeval tp;
26

27 gettimeofday (&tp, NULL);
28 return
29 tp.tv_sec + tp.tv_usec/(double)1.0e6;
30 }
31

32 #include <sys/resource.h>
33

34 /* cpu + system time */
35

36 static double cpus(void)
37 {
38 struct rusage ru;
39

40 getrusage(RUSAGE_SELF,&ru);
41 return
42 (ru.ru_utime.tv_sec + ru.ru_stime.tv_sec) +
43 (ru.ru_utime.tv_usec + ru.ru_stime.tv_usec)/(double)1.0e6;
44 }
45

46 typedef struct {
47 double accum_wall, accum_cpus;
48 double start_wall, start_cpus;
49 time_t init_time;
50 char running;
51 } timer;
52

53 static void timer_clear (timer *t)
54 {
55 t->accum_wall = t->accum_cpus = 0;
56 t->start_wall = t->start_cpus = 0;
57 t->running = 0;
58 }

1.0 FINAL 102

14 C EXAMPLES

59

60 static void timer_start (timer *t)
61 {
62 t->start_wall = wall();
63 t->start_cpus = cpus();
64 t->running = 1;
65 }
66

67 static void timer_stop (timer *t)
68 {
69 if (t->running == 0)
70 return;
71 t->accum_cpus += cpus() - t->start_cpus;
72 t->accum_wall += wall() - t->start_wall;
73 t->running = 0;
74 }
75

76 static void timer_report (timer *t, double *pwall, double *pcpus,
77 int64 print)
78 {
79 double w, c;
80

81 w = t->accum_wall;
82 c = t->accum_cpus;
83

84 if (t->running) {
85 c += cpus() - t->start_cpus;
86 w += wall() - t->start_wall;
87 }
88 if (print) {
89 printf ("%7.3f secs of wall clock time\n", w);
90 printf ("%7.3f secs of cpu and system time\n", c);
91 }
92

93 if (pwall) *pwall = w;
94 if (pcpus) *pcpus = c;
95 }
96

97

98 /* some masking macros */
99

100 #define _ZERO64 0uL
101 #define _maskl(x) (((x) == 0) ? _ZERO64 : ((~_ZERO64) << (64-(x))))
102 #define _maskr(x) (((x) == 0) ? _ZERO64 : ((~_ZERO64) >> (64-(x))))
103 #define _mask(x) (((x) < 64) ? _maskl(x) : _maskr(2*64 - (x)))
104

105 /* PRNG */
106

107 #define _BR_RUNUP_ 128L
108 #define _BR_LG_TABSZ_ 7L
109 #define _BR_TABSZ_ (1L<<_BR_LG_TABSZ_)
110

111 typedef struct {
112 uint64 hi, lo, ind;
113 uint64 tab[_BR_TABSZ_];
114 } brand_t;
115

116 #define _BR_64STEP_(H,L,A,B) {\
117 uint64 x;\

1.0 FINAL 103

14 C EXAMPLES

118 x = H ^ (H << A) ^ (L >> (64-A));\
119 H = L | (x >> (B-64));\
120 L = x << (128 - B);\
121 }
122

123 static uint64 brand (brand_t *p) {
124 uint64 hi=p->hi, lo=p->lo, i=p->ind, ret;
125

126 ret = p->tab[i];
127

128 _BR_64STEP_(hi,lo,45,118);
129

130 p->tab[i] = ret + hi;
131

132 p->hi = hi;
133 p->lo = lo;
134 p->ind = hi & _maskr(_BR_LG_TABSZ_);
135

136 return ret;
137 }
138

139 static void brand_init (brand_t *p, uint64 val)
140

141 {
142 int64 i;
143 uint64 hi, lo;
144

145 hi = 0x9ccae22ed2c6e578uL ^ val;
146 lo = 0xce4db5d70739bd22uL & _maskl(118-64);
147

148 for (i = 0; i < 64; i++)
149 _BR_64STEP_(hi,lo,33,118);
150

151 for (i = 0; i < _BR_TABSZ_; i++) {
152 _BR_64STEP_(hi,lo,33,118);
153 p->tab[i] = hi;
154 }
155 p->ind = _BR_TABSZ_/2;
156 p->hi = hi;
157 p->lo = lo;
158

159 for (i = 0; i < _BR_RUNUP_; i++)
160 brand(p);
161 }
162

163 /* init / end subroutines */
164

165 /* prints information, initializes PRNG, returns number of iterations */
166

167 #define INIT_ST "INIT>"
168 #define END_ST "END>"
169 #define MAX_HOST 80L
170

171 static int64 bench_init (int argc, char *argv[], brand_t *br,
172 timer *t, char *more_args)
173 {
174 uint64 seed;
175 int64 niters;
176 int i;

1.0 FINAL 104

14 C EXAMPLES

177 time_t c;
178 static char host[MAX_HOST];
179

180 if ((i = sizeof(void *)) != 8) {
181 printf ("error: sizeof(void *) = %d\n", i);
182 exit(1);
183 }
184 if ((i = sizeof(long)) != 8) {
185 printf ("error: sizeof(long) = %d\n", i);
186 exit(1);
187 }
188 if ((i = sizeof(int)) != 4) {
189 printf ("error: sizeof(int) = %d\n", i);
190 exit(1);
191 }
192

193 if (argc < 3) {
194 /* prog seed iters [... other args] */
195 printf ("Usage:\t%s seed iters %s\n",
196 argv[0], (more_args != NULL) ? more_args : "");
197 exit(0);
198 }
199

200 printf ("\n===\n\n");
201

202 /* print start time of day */
203 time (&c);
204 printf ("%s %s started at: %s", INIT_ST, argv[0], ctime(&c));
205 t->init_time = c;
206

207 gethostname (host, MAX_HOST);
208 printf ("%s host machine is %s\n", INIT_ST, host);
209

210 printf ("%s program built on %s @ %s\n",
211 INIT_ST, __DATE__, __TIME__);
212

213 seed = atol (argv[1]);
214 niters = atol (argv[2]);
215

216 printf ("%s seed is %ld niters is %ld\n", INIT_ST, seed, niters);
217 if (argc > 3) {
218 printf ("%s other args: ", INIT_ST);
219 argv += 3;
220 while (*argv)
221 printf (" %s", *argv++);
222 printf ("\n");
223 }
224

225 if (br != NULL)
226 brand_init (br, seed);
227

228 if (t != NULL)
229 timer_clear (t);
230

231 printf ("\n");
232

233 return niters;
234 }
235

1.0 FINAL 105

14 C EXAMPLES

236 static void bench_end (timer *t, int64 iters, char *work)
237 {
238 time_t c;
239 double wall, cpus, rate;
240

241 printf ("\n");
242

243 /* print end time of day */
244 time (&c);
245 printf ("%s ended at: %s", END_ST, ctime(&c));
246 c = c - t->init_time;
247 printf ("%s elapsed time is %d seconds\n", END_ST, c);
248

249 if (t != NULL) {
250 timer_report(t, &wall, &cpus, 0);
251

252 printf ("%s %7.3f secs of wall time ",
253 END_ST, wall);
254 if (c <= 0) c = 1;
255 printf ("%7.3f%% of value reported by time()\n", wall/c*100.);
256

257 if (wall <= 0) wall = 0.0001;
258 printf ("%s %7.3f secs of cpu+sys time utilization = %5.3f%%\n",
259 END_ST, cpus, cpus/wall*100.);
260

261 if (cpus > (wall+.01))
262 printf ("this result is suspicious since cpu+system > wall\n");
263 if ((iters > 0) && (work != NULL)) {
264 const char *units[4] = {"", "K", "M", "G"};
265 int i = 0;
266

267 rate = iters/wall;
268 while (i < 3) {
269 if (rate > 999.999) {
270 rate /= 1024.;
271 i++;
272 }
273 else
274 break;
275 }
276

277 printf ("%s %8.4f %s %s per second\n",
278 END_ST, rate, units[i], work);
279 }
280 }
281 }

1.0 FINAL 106

14 C EXAMPLES

Listing 8: Program that implements an ALL-2-ALL (main)
1 /* CVS info */
2 /* $RCSfile: all2all_main.c,v $ */
3 /*
4 * Purpose: all2all.c copies data from one half of a table to the other
5 * half of the table.
6 *
7 *
8 * Date Description
9 *

10 * all2all has been modified to automatically compare cksum results
11 * for 128 processors at run time and to print an error message
12 * if there is a discrepancy.
13 * In the future additional error checking for any number of processors
14 * will be done.
15 * added memset(tab,0,tsize)
16 *
17 * Preprocessor DEFINED Variables:
18 * 1. This benchmark will automatically verify checksums unless CHECKOFF is
19 * defined in the makefile flags. To turn off the automated check specify
20 * -DCHECKOFF in the makefile flags and recompile.
21 * (MUST define CHECKOFF if not using 128 processors.)
22 * 2. If additional timing info is needed for debugging specify -DPTIMES in
23 * the makfile flags.
24 */
25

26 #include <string.h>
27 #include "all2all.h"
28

29 int64 SELF, SIZE;
30

31 #if 0
32 int64 known_v[] = {
33 0x889d1f6f6b165117,
34 0xc2597eee7a77503b,
35 0x9fde67a85fec3140,
36 0x98218560b0e2fcad,
37 0x77970e91ec2ae92f,
38 0xd7c257a76e652480,
39 0xfae8fc3473e44bd7,
40 0xae70524b190b97d1,
41 0xbd3481e6d55c2587,
42 0x92b1e34c9a63c162,
43 0xd53483207d373375,
44 0x818b5ae39e15de0c,
45 0xa10c2c69b3441650,
46 0x3213b203ef570cfe,
47 0x953cacafbc6694af,
48 0x0435c6359cfeac6a,
49 0x0107162b374ac090,
50 0x3b4579d543eb131e,
51 0x1f46dbcd8e23ca22,
52 0x4f99bd5b1c45bff2,
53 0x69872eca2dd09002,
54 0x5a10168c91da8c2e,
55 0xfb7842751192f1bf,
56 0x42d182c4447097fe,
57 0xacdb47e7a6c94a44,
58 0x91fb985dbdd6e93b,

1.0 FINAL 107

14 C EXAMPLES

59 0x4796404dd92f2c3a,
60 0xcda282a270d3610f,
61 0x29d786ca8abdaf09,
62 0x3f9af62d5a02bdc6,
63 0x513eb2b11ab80a05,
64 0x59a32e0cc53f2c3d,
65 0x5b22688cc292ee8c,
66 0xd7076df7f4c3b35b,
67 0x3dcf8e920a889b72,
68 0x6cf0fe53b376b881
69 };
70

71 #endif
72 int gv = 0;
73

74 /* Set up for one iteration only.*/
75 int64 ckv[3] = {
76 0x156a0e1af0914226,
77 0xa70ebc57a39fd98d,
78 0x1513f274d76734c6,
79 };
80

81 uint64 do_cksum (uint64 *arr, int64 len)
82 {
83 int64 i, cksum;
84

85 // compute src cksum
86 for (i = cksum = 0; i < len; i++)
87 cksum += arr[i];
88 return accum_long (cksum);
89 }
90

91 int main (int argc, char *argv[])
92 {
93 static char cvs_info[] = "BMkGRP $Date: $ $Revision: $ $RCSfile: all2all_main.c,v $ $Name: $";
94

95 int itr;
96 int idx;
97 brand_t br;
98 timer t, t0, t1;
99 double nsec;

100

101 double total_time = 0.0;
102

103 int status = 0;
104

105 int64 i, seed, arg, msize, tsize, len, oldsize=0, rep, cksum;
106 uint64 *tab=NULL;
107

108 start_pes(0);
109 SELF=_my_pe();
110 SIZE=_n_pes();
111

112 if (argc < 5) {
113 if (SELF == 0)
114 fprintf (stderr, "Usage:\t%s seed msg_size(B) table_size(MB) rep_cnt "
115 "[ms2 ts2 rc2 ..]\n", argv[0]);
116 status = 1;
117 goto DONE;

1.0 FINAL 108

14 C EXAMPLES

118 }
119 seed = atol (argv[1]);
120 if (SELF == 0)
121 printf ("base seed is %ld\n", seed);
122 seed += SELF << 32;
123 brand_init (&br, seed); // seed uniquely per PE
124

125 arg = 2;
126

127 while (arg < argc) {
128

129

130 msize = atol (argv[arg++]); if (arg >= argc) break;
131 /* Table size * 1 million. */
132 tsize = atol (argv[arg++]) * (1L << 20); if (arg >= argc) break;
133 //rep = atol (argv[arg++]);
134 rep = 1;
135 arg++;
136

137 if (SELF == 0) printf ("tsize = %ldMB msize = %dB\n",
138 tsize/(1L<<20), msize);
139 if (msize < sizeof(long)) {
140 if (SELF == 0) printf ("msize too short!\n");
141 //status = 1;
142 goto DONE;
143 }
144 //itr=0;
145

146 idx = 0;
147

148 switch(SIZE){
149 case 2:
150 idx = 0;
151 break;
152 case 4:
153 idx = 1;
154 break;
155 case 8:
156 idx = 2;
157 break;
158 default:
159 fprintf(stderr,"warning, check sum for (%d) pes not supported.\n",
160 SIZE);
161 }
162

163 while (rep-- > 0) {
164

165 /* START TIMING */
166 //timer_clear (&t0);
167 //timer_clear (&t1);
168 //timer_start (&t0);
169

170 if ((tab == NULL) || (tsize > oldsize)) {
171 if (tab != NULL) {
172 dram_shfree (tab);
173 oldsize = 0;
174 }
175 if (SELF == 0) printf ("trying dram_shmalloc of %ld bytes\n", tsize);
176 tab = (uint64 *) dram_shmalloc (tsize);

1.0 FINAL 109

14 C EXAMPLES

177

178 if (tab == NULL) {
179 if (SELF == 0) printf ("dram_shmalloc failed!\n");
180 status = 1;
181 goto DONE;
182

183 }
184 oldsize = tsize;
185 }
186

187 // length in words
188 len = tsize / sizeof(uint64);
189

190 // important to init table
191 // to ensure cksum consistency on different platforms
192 memset(tab,0,tsize);
193

194 for (i = 0; i < len; i+=64){
195 tab[i] = brand(&br);
196 }
197

198 // we’ll have destination/source arrays each of half size
199 len /= 2;
200

201 //timer_stop (&t0);
202 // source checksum
203 cksum = do_cksum (&tab[len], len);
204 if (SELF == 0) printf ("cksum is %016lx\n", cksum);
205 if (SELF == 0){
206 //if(cksum!=ckv[itr++]){
207 /* Set up for one iteration only. */
208 if(cksum!=ckv[idx]){
209 printf ("cksum %016lx != ckv[%d] %016x\n",cksum,idx,ckv[idx]);
210 gexit(1);
211 }
212

213 }
214

215 //timer_start (&t1);
216 len = do_all2all (&tab[0], &tab[len], len, msize/sizeof(uint64));
217

218 shmem_barrier_all();
219

220 //timer_stop (&t1);
221 /* END TIMING */
222 #if 0
223

224 // dest checksum
225 i = do_cksum (&tab[0], len);
226 if (i != cksum) {
227 printf ("PE %4ld ERROR: %016lx != %016lx\n", SIZE, i, cksum);
228 status = 1;
229 goto DONE;
230 }
231

232 #ifndef CHECKOFF
233 if (i != known_v[gv]) {
234 printf ("CHECKSUM PE %4ld ERROR: %016lx != %016lx\n", SIZE, i, known_v[gv]);
235 status = 1;

1.0 FINAL 110

14 C EXAMPLES

236 goto DONE;
237 }
238 gv++;
239 #endif
240

241

242 //t.accum_wall = t0.accum_wall + t1.accum_wall;
243 //t.accum_cpus = t0.accum_cpus + t1.accum_cpus;
244

245

246 /*if (SELF == 0) {
247

248 #ifdef PTIMES
249 printf ("%8.3f %8.3f\n", t0.accum_wall , t1.accum_wall);
250 printf ("%8.3f %8.3f\n", t0.accum_cpus , t1.accum_cpus);
251 #endif
252 printf ("wall reports %8.3f secs cpus report %8.3f secs\n",
253 t.accum_wall, t.accum_cpus);
254 nsec = MAX(t.accum_wall, t.accum_cpus);
255 total_time += nsec;
256 if (nsec > 0)
257 printf ("%8.3f MB/sec with %ld bytes transfers\n",
258 len*sizeof(uint64)/(double)(1L<<20)/nsec, msize);
259 }*/
260 #endif
261 }
262 //if (SELF == 0)
263 //printf ("\n");
264 }
265 //if (SELF == 0)
266 //{
267 //printf ("total time = %14.9f\n", total_time);
268

269 //}
270

271 DONE:
272 shmem_barrier_all();
273 return status;
274 }

1.0 FINAL 111

14 C EXAMPLES

Listing 9: Program that implements an ALL-2-ALL (subs)
1 #include "bench.h"
2 #include <mpp/shmem.h>
3

4 #define PERM(ME,TOT,ITER) ((ME)^(ITER)) // ok if 2^n pes
5

6 #define MAX(A,B) (((A)>(B)) ? (A) : (B))
7 #define MIN(A,B) (((A)<(B)) ? (A) : (B))
8

9 int64 do_all2all (uint64 *dst, uint64 *src, int64 len, int64 nwrd);
10 int64 accum_long (int64 val);
11

12 extern int64 SELF, SIZE;
13

14 /* returns words sent per PE */
15

16 int64 do_all2all (uint64 *dst, uint64 *src, int64 len, int64 nwrd)
17 {
18 static char cvs_info[] = "BMKGRP $Date: $ $Revision: $ $RCSfile: all2all.c,v $ $Name: $";
19

20 int64 i, j, pe;
21

22 len = len - (len % (nwrd * SIZE)); // force even multiple
23 for (i = 0; i < len; i+=SIZE*nwrd) {
24 shmem_barrier_all();
25 for (j = 0; j < SIZE; j++) {
26 pe = PERM(SELF,SIZE,j);
27 /* shmem_put (&dst[i + SELF*nwrd], &src[i + pe*nwrd], nwrd, pe);*/
28 shmem_put64 (&dst[i + SELF*nwrd], &src[i + pe*nwrd], nwrd, pe);
29 }
30 }
31 return len;
32 }
33

34 int64 accum_long (int64 val)
35

36 {
37 int64 i;
38 static int64 target, source, init=0;
39 static int64 Sync[_SHMEM_REDUCE_SYNC_SIZE];
40 static int64 Work[2 + _SHMEM_REDUCE_MIN_WRKDATA_SIZE];
41

42 if (! init) {
43 /* need to initialize Sync first time around */
44 for(i = 0; i < _SHMEM_REDUCE_SYNC_SIZE; i++)
45 Sync[i] = _SHMEM_SYNC_VALUE;
46 init = 1;
47 }
48 source = val;
49 shmem_barrier_all();
50

51 shmem_long_sum_to_all (&target, &source, 1, 0, 0, SIZE, Work, Sync);
52

53 shmem_barrier_all();
54 return target;
55 }

1.0 FINAL 112

14 C EXAMPLES

Listing 10: Program that computes Pi
1 /*
2 * This file is distributed as part of GatorSHMEM, a project of the HCS
3 * Research Lab / CHREC at the University of Florida.
4 *
5 * Copyright (c) 2005-2010, the University of Florida.
6 * All rights reserved.
7 *
8 * Modified by SPoole from ORNL to be OpenSHMEM V1.0 compliant
9 * and work with other architectures.

10 *
11 */
12 #include <math.h>
13

14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <time.h>
17 #include <mpp/shmem.h>
18

19 #define M_PI_2 1.57079632679489661923
20 #define TRIES 1000000000
21

22

23 double timerval()
24 {
25 struct timeval st;
26 gettimeofday (&st, NULL);
27 return st.tv_sec + st.tv_usec * 1e-6;
28 }
29

30

31 int main(int argc, char *argv[])
32 {
33 // 1. get random [0, 1] ==>
34 // 2. get random [0, pi/2] ==>theta
35 // 3. hit X < sin(theta)
36 // 4. 2/pi = hit/tries.
37

38 double X, Theta, My_pi;
39 double Tstart, Tend;
40 int i, total, hit=0;
41 int *buf, my_mem;
42 int rank, numprocs, num_of_procs;
43

44 num_of_procs = atoi(argv[1]);
45

46 start_pes (0);
47

48 numprocs = _num_pes();
49 rank = _my_pe();
50

51 my_mem = (sizeof(int) * numprocs);
52 buf = shmalloc(my_mem);
53

54 srand((unsigned int) time(NULL));
55

56 if (rank == 0) {
57 printf("pi is %f\n", M_PI_2);
58 printf("sin(pi/2) is %f\n", sin(M_PI_2));

1.0 FINAL 113

14 C EXAMPLES

59 fflush(stdout);
60 }
61

62 Tstart = timerval();
63

64 if (rank != 0) {
65 total = TRIES/(numprocs-1);
66 if (rank == 1)
67 total += TRIES % (numprocs-1);
68

69 srand((unsigned int) time(NULL));
70

71 for (i = 0; i < total ; i++){
72 X = rand();
73 X = X/RAND_MAX;
74

75 Theta = rand();
76 Theta = (M_PI_2) * (Theta/RAND_MAX);
77 if (X < sin(Theta))
78 hit++;
79 }
80 buf[0] = hit;
81 }
82

83 shmem_barrier_all();
84

85 if (rank == 0)
86 for (i = 1; i < numprocs; i++) {
87 shmem_getmem(buf, buf, sizeof(int), i);
88 hit += buf[0];
89 printf("from node(%d), getmem buf\t %d, so hit is\t %d\n", i, buf[0], hit);
90 }
91

92 shmem_barrier_all();
93

94 if (rank == 0) {
95 My_pi = 2 * (1 / (((double)hit)/TRIES));
96 Tend = timerval();
97 printf("Hit is : %d :: Total is %d \n",hit, TRIES);
98 printf("My pi is %.16f \n", My_pi);
99 printf("Elapsed time is %f \n", Tend - Tstart);

100 }
101

102 shmem_barrier_all();
103

104 return 0;
105 }

1.0 FINAL 114

15 FORTRAN EXAMPLES

15 Fortran Examples

Listing 11: Hello World program
1 program whoami
2

3 include ’mpp/shmem.fh’
4

5 integer npes, me
6 character*32 h
7

8 call start_pes(0)
9

10 npes = num_pes()
11 me = my_pe()
12 call hostnm(h)
13

14 print *, h, ’I am ’, me, ’ of ’, npes
15

16 end program whoami

1.0 FINAL 115

16 GLOSSARY

16 Glossary

16.1 OpenSHMEM Concepts

processing element One of the processors involved
in the execution of an
OpenSHMEM application.
Called “PE” for short.

virtual PE number Integer value used to identify a
processing element.

active set of PEs The group of PEs involved in
the execution of a collective
operation.

OpenSHMEM program Program that makes use of
routines in the OpenSHMEM
library.

put operation An operation that places data
on a remote processing
element.

get operation An operation that retrieves
data from a remote processing
element.

remote pointer A pointer that allows to
directly reference a data
object that is stored in a
remote processing element.

reduction Performs an associative binary
operation across a set of
values on multiple PEs.

broadcast A collective operation that
places a data object available
on a “root” PE, onto all other
PEs in the broadcast’s active
set.

barrier A collective synchronization
mechanism. PEs in the active
set cannot leave the barrier
routine until all of those PEs
have reached the barrier.

1.0 FINAL 116

16 GLOSSARY

16.2 Data Terminology

cache Intermediate and transparent
store used to speed up future
requests.

symmetric data object A local data object that has a
corresponding data object on
all other PEs with the same
length, type and offset.

symmetric heap Special memory region, with
possibly different starting
address on each PE, in which
dynamically created
symmetric data objects are
stored. Objects in this region
have the same offset on every
PE with respect to the region’s
starting address.

environment variable Set of named values, inherited
from execution/launch, that
will affect how programs
behave.

strided-data A special type of array in which
elements are separated by a
specific number (non-unit) of
memory locations.

16.3 Implementation Terminology

atomic operation An operation that guarantees
that the resource being
accessed will not be modified
by another process until the
operation is completed.

data latency The period of time that starts
when a processing element
initiates a transfer of data and
ends when the processing
element is able to make use of
the data.

1.0 FINAL 117

16 GLOSSARY

overhead Any combination of network
latency, memory bandwidth or
computation time required to
perform a communication
operation.

mutual exclusion Mechanism used to avoid the
simultaneous use of a shared
resource.

lock Synchronization mechanism
that limits access to a given
resource.

undefined behavior A behavior not defined by the
OpenSHMEM specification. See
the Undefined Behavior
section for more information
about undefined behavior in
OpenSHMEM.

1.0 FINAL 118

References

References

[1] ARMCI website,
http://www.emsl.pnl.gov/docs/parsoft/armci/.

[2] GASNet specification,
http://gasnet.cs.berkeley.edu/.

[3] GPSHMEM,
http://www.scl.ameslab.gov/Projects/GPSHMEM/GPSHMEM.html.

[4] PGAS forum,
http://www.pgas.org/.

[5] TurboSHMEM,
http://da.nieltiggemann.de/science/sc/turboshmem/.

[6] HPC Tools group at the University of Houston. Commonly used function calls in the
OpenSHMEM library for C/C++ and FORTRAN,
http://www.openshmem.org/wiki/index.php/Documentation:Tutorials.

[7] Krzysztof Parzyszek, Ricky A. Kendall, and Robyn R. Lutz. Generalized portable SHMEM
library for High Performance Computing. Iowa State University, 2003.

[8] Stephen W. Poole and Galen M. Shipman. Open-SHMEM: Towards a unified RMA model,
2000.

[9] Hongzhang Shan and Jaswinder Pal Singh. A Comparison of MPI, SHMEM and cache-
coherent shared address space programming models on a tightly-coupled multiproces-
sors (sic.). International Journal of Parallel Programming, 29(3):283–318, June 2001.

[10] Tim Stitt. An introduction to the Partitioned Global Address Space (PGAS) programming
model,
http://cnx.org/content/m20649/latest/.

[11] K. Yelick. Performance and productivity opportunities using global address space pro-
gramming models, 2000.

1.0 FINAL 119

http://www.emsl.pnl.gov/docs/parsoft/armci/
http://gasnet.cs.berkeley.edu/
http://www.scl.ameslab.gov/Projects/GPSHMEM/GPSHMEM.html
http://www.pgas.org/
http://da.nieltiggemann.de/science/sc/turboshmem/
http://www.openshmem.org/wiki/index.php/Documentation:Tutorials
http://cnx.org/content/m20649/latest/

	1 Introduction
	2 What is SHMEM ?
	3 The OpenSHMEM Project
	4 Memory Model
	5 Execution Model
	6 Undefined Behavior
	7 Library Routines
	8 Library Constants
	9 Environment Variables
	10 Writing OpenSHMEM Programs
	11 Compiling and Running Applications
	12 Running Applications
	13 Examples
	14 C Examples
	15 Fortran Examples
	16 Glossary
	Bibliography

